scispace - formally typeset
Search or ask a question
Author

Myron Sasser

Bio: Myron Sasser is an academic researcher. The author has contributed to research in topics: Pepper & Fatty acid. The author has an hindex of 12, co-authored 18 publications receiving 6084 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a method for preparing 96 soil samples and blanks in 1.5 days, a 4-to 5-fold increase in throughput, using a 96-well solid phase extraction plate.

321 citations

Journal ArticleDOI
TL;DR: Results show that the antibacterial cationic peptides induce stasis in the early growth phase, and the transcriptional efficacy of antibacterial peptides correlates with their minimum inhibitory concentration, and also with their ability to mediate direct exchange of phospholipids between vesicles.

103 citations

Journal ArticleDOI
TL;DR: Caracterisation partielle du composant actif et de ses effets sur the germination des urediospores and sur the developpement des pustules.
Abstract: Effet de B. subtilis sur la rouille du haricot en conditions de serre et en planches froides. Caracterisation partielle du composant actif et de ses effets sur la germination des urediospores et sur le developpement des pustules

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review considers alpha-helical, antimicrobial peptides from the point of view of six interrelated structural and physicochemical parameters that modulate their activity and specificity: sequence, size, structuring, charge, amphipathicity, and hydrophobicity.
Abstract: Gene-encoded antimicrobial peptides are an important component of host defense in animals ranging from insects to mammals. They do not target specific molecular receptors on the microbial surface, but rather assume amphipathic structures that allow them to interact directly with microbial membranes, which they can rapidly permeabilize. They are thus perceived to be one promising solution to the growing problem of microbial resistance to conventional antibiotics. A particularly abundant and widespread class of antimicrobial peptides are those with amphipathic, alpha-helical domains. Due to their relatively small size and synthetic accessibility, these peptides have been extensively studied and have generated a substantial amount of structure-activity relationship (SAR) data. In this review, alpha-helical antimicrobial peptides are considered from the point of view of six interrelated structural and physicochemical parameters that modulate their activity and specificity: sequence, size, structuring, charge, amphipathicity, and hydrophobicity. It begins by providing an overview of how these vary in peptides from different natural sources. It then analyzes how they relate to the currently accepted model for the mode of action of alpha-helical peptides, and discusses what the numerous SAR studies that have been carried out on these compounds and their analogues can tell us. A comparative analysis of the many alpha-helical, antimicrobial peptide sequences that are now available then provides further information on how these parameters are distributed and interrelated. Finally, the systematic variation of parameters in short model peptides is used to throw light on their role in antimicrobial potency and specificity. The review concludes with some considerations on the potentials and limitations for the development of alpha-helical, antimicrobial peptides as antiinfective agents.

1,182 citations

Book ChapterDOI
02 Mar 2001

984 citations

Journal ArticleDOI
25 Aug 2005-Nature
TL;DR: It is demonstrated that there is a decelerating relationship between community respiration and increasing bacterial diversity, and both synergistic interactions among bacterial species and the composition of the bacterial community are important in determining the level of ecosystem functioning.
Abstract: Despite their importance, we are only beginning to understand how mixed communities of bacteria operate. There is a good reason for this: the microbial world is remarkably complex and dynamic so it is difficult to design experiments that ask the right questions. Laboratory microcosms are useful but involve small numbers of species in unreal situations. A natural ecosystem that can be manipulated experimentally is available, however. Rainpools that form in bark-lined depressions at the base of European beech trees are communities of up to 72 species, rather than the thousands found in, say, pond water. In this rainpool ecosystem the number of bacterial species (the biodiversity) strongly influences the rate at which the community provides a particular service (in this case, respiration). On this scale at least, species richness determines the level at which an ecosystem can function. Bacterial communities provide important services. They break down pollutants, municipal waste and ingested food, and they are the primary means by which organic matter is recycled to plants and other autotrophs. However, the processes that determine the rate at which these services are supplied are only starting to be identified. Biodiversity influences the way in which ecosystems function1, but the form of the relationship between bacterial biodiversity and functioning remains poorly understood. Here we describe a manipulative experiment that measured how biodiversity affects the functioning of communities containing up to 72 bacterial species constructed from a collection of naturally occurring culturable bacteria. The experimental design allowed us to manipulate large numbers of bacterial species selected at random from those that were culturable. We demonstrate that there is a decelerating relationship between community respiration and increasing bacterial diversity. We also show that both synergistic interactions among bacterial species and the composition of the bacterial community are important in determining the level of ecosystem functioning.

836 citations

Journal ArticleDOI
TL;DR: These molecular methods suggest that a typical named species contains many ecotypes, each with the universal attributes of species, which is more like a genus than a species.
Abstract: Bacterial systematics has not yet reached a consensus for defining the fundamental unit of biological diversity, the species. The past half-century of bacterial systematics has been characterized by improvements in methods for demarcating species as phenotypic and genetic clusters, but species demarcation has not been guided by a theory-based concept of species. Eukaryote systematists have developed a universal concept of species: A species is a group of organisms whose divergence is capped by a force of cohesion; divergence between different species is irreversible; and different species are ecologically distinct. In the case of bacteria, these universal properties are held not by the named species of systematics but by ecotypes. These are populations of organisms occupying the same ecological niche, whose divergence is purged recurrently by natural selection. These ecotypes can be discovered by several universal sequence-based approaches. These molecular methods suggest that a typical named species contains many ecotypes, each with the universal attributes of species. A named bacterial species is thus more like a genus than a species.

745 citations

Journal ArticleDOI
TL;DR: Although some of the P-solubilizing rhizobacteria significantly increased plant height or pod yield, none increased P-uptake, indicating that P- solubilization was not the main mechanism responsible for positive growth response.
Abstract: The ability of phosphate-solubilizing rhizobacteria to enhance the growth and phosphorus uptake of canola (Brassica napus L., cv. Legend) was studied in potted soil experiments in the growth chamber. One hundred and eleven bacteria isolated from the rhizosphere of field-grown plants, and a collection of nine bacteria known to be effective plant growth-promoting rhizobacteria (PGPR), were screened for P-solubilization in vitro. All rhizobacteria were identified using whole-cell fatty acids methyl ester (FAME) profiles. The best P-solubilizing isolates were two Bacillus brevis strains, B. megaterium, B. polymyxa, B. sphaericus, B. thuringiensis, and Xanthomonas maltophilia (PGPR strain R85). The P-solubilizers were tested for their effects on growth and P-uptake of canola plants in a P-deficient soil amended with rock phosphate. Although some of the P-solubilizing rhizobacteria significantly increased plant height or pod yield, none increased P-uptake. The most effective inoculant was a B. thuringiensis isolate which significantly increased the number and weight of pods and seed yield without rock phosphate. Xanthomonas maltophilia increased plant height, whereas the other bacilli increased the number on weight of pods. These results demonstrate the potential use of these P-solubilizing rhizobacteria as inoculants for canola, but indicate that P-solubilization was not the main mechanism responsible for positive growth response.

648 citations