scispace - formally typeset
Search or ask a question
Author

N. Adenan

Bio: N. Adenan is an academic researcher from Universiti Teknologi Malaysia. The author has contributed to research in topics: High-density polyethylene & Curing (chemistry). The author has an hindex of 2, co-authored 2 publications receiving 34 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the compounding of rice husk and high density polyethylene (HDPE) was undertaken on a Sino PSM 30 co-rotating twin screw extruder.
Abstract: The compounding of rice husk and high density polyethylene (HDPE) was undertaken on a Sino PSM 30 co-rotating twin screw extruder. Four sizes of rice husk were studied at various compositions. The size ranged from 500 μm and below (coded A, B, C and D) while the content of rice husk in the composite varies from 30, 40 and 50 percent of weight. A fixed amount of Ultra-Plast TP10 as a compatibilizer and Ultra-Plast TP 01 as lubricant, were added into the bio-composite compound. The injection molding process ability of the bio-composite was studied through flow behavior on melt flow indexer and analyzed on JSW N100 B11 Injection Molding. Size A which has the largest particle is the most appropriate size as the bio-composite filler based on thermal stability test. The melt flow rate of rice husk/HDPE (RHPE) decreases with the increased in rice husk compositions and apparent viscosity also increases with composition for all filler size. Melt flow rate above 4g/10 min was found to be the lower limit for injection molding process. The smaller the filler size, the lower is the impact strength and the increased in the filler composition lowers the impact strength. A bio-composite at 30 weight percent rice husk size A (RH30PEA) was found to have optimum rheological properties with respect to impact strength.

21 citations

Journal ArticleDOI
TL;DR: In this paper, a formulation was designed to produce silane crosslinkable rice straw/high density polyethylene (RSPE) compound suitable for injection molding process.
Abstract: A formulation was designed to produce silane crosslinkable rice straw/high density polyethylene (RSPE) compound suitable for injection molding process. The formulations consist of high density polyethylene (HDPE) as the base polymer, rice straw as the filler, processing aids and a mixture of crosslink chemicals. Crosslink chemicals consist of vinyltrimethoxysilane (VTMO) as crosslinking agent, dicumyl peroxide (DCP) as the initiator, dibutyltin dilaurate (DBTL) as the condensation catalyst. Lignocellulosic material, rice straw was oven dried at 70°C for 24 h, grinded and sieved. A counter rotating twin shaft high speed mixer was utilized to mix the rice straw, HDPE and the processing aids. Blends were then compounded on co-rotating and intermeshing twin screw extruder. Test specimens were prepared via injection molding process followed by oven curing at 90°C. Fourier Transform Infra Red (FTIR) was used to determine the chemical group involved in the crosslinking reaction. Degree of crosslinking in the silane crosslinked compound was measured by determining their gel content. Thermal properties were analyzed on the Differential Scanning Calorimetry (DSC) for the melt temperature, Tm, whereas Thermogravimetric (TGA) analysis for its thermal stability behavior. The degree of crosslinking in RSPE increases with an increased in VTMO and DCP concentration. The results from FTIR showed the presence of Si-O-Si bond and Si-O-C indicative of crosslinks formation. Thermal behavior of the compound illustrated that the crosslinked RSPE was more stable than the uncrosslinked RSPE and pure HDPE, while the Tm was unchanged.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.

3,074 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight previous works of rice husk filled polymer composites to provide information for applications and further research in this area, based on the information gathered, application of RH filled composites as alternative materials in building and construction is highly plausible with both light weight and low cost being their main driving forces.
Abstract: Natural fibers from agricultural wastes are finding their importance in the polymer industry due to the many advantages such as their light weight, low cost and being environmentally friendly. Rice husk (RH) is a natural sheath that forms around rice grains during their growth. As a type of natural fiber obtained from agroindustrial waste, RH can be used as filler in composites materials in various polymer matrices. This review paper is aimed at highlighting previous works of RH filled polymer composites to provide information for applications and further research in this area. Based on the information gathered, application of RH filled composites as alternative materials in building and construction is highly plausible with both light weight and low cost being their main driving forces. However, further investigations on physical and chemical treatment to further improve the interfacial adhesion with polymeric matrix are needed as fiber-polymer interaction is crucial in determining the final composite properties. Better understanding on how the used polymer blends as the matrix and secondary fillers may affect the properties would provide interesting areas to be explored.

131 citations

Journal ArticleDOI
TL;DR: The aim of this research was to improve the new biocomposites’ performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide and BPO as initiators.
Abstract: In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (EcoflexTM), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites’ performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites’ spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.

59 citations

Book ChapterDOI
TL;DR: In this article, composites with polypropylene and cellulose microfibrils were characterized by MS-coupled simultaneous TGA-DSC and the reinforcing effect of cellulose was emphasised by mechanical characterization.
Abstract: Polypropylene-based composites containing 10–30% by weight cellulose microfibrils were studied. Composites with polypropylene and cellulose microfibrils were characterised by MS-coupled simultaneous TGA-DSC and the reinforcing effect of cellulose microfibrils was emphasised by mechanical characterization. Experimental results are discussed in connection with the composite preparation method by mixing and extrusion. The effect of cellulose on the thermal stability and degradation behaviour of the polypropylene matrix is pointed out.

53 citations

Journal ArticleDOI
TL;DR: In this article, the effect of thermal ageing on polymer composites was studied by investigating their weight loss at different interval of time, and the retention in tensile strength has been found to be increasing with CMF loading.

45 citations