scispace - formally typeset
Search or ask a question
Author

N. Arunkumar

Bio: N. Arunkumar is an academic researcher from Shanmugha Arts, Science, Technology & Research Academy. The author has contributed to research in topics: Support vector machine & Feature (computer vision). The author has an hindex of 32, co-authored 57 publications receiving 3279 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The proposed hybrid security model for securing the diagnostic text data in medical images proved its ability to hide the confidential patient’s data into a transmitted cover image with high imperceptibility, capacity, and minimal deterioration in the received stego-image.
Abstract: Due to the significant advancement of the Internet of Things (IoT) in the healthcare sector, the security, and the integrity of the medical data became big challenges for healthcare services applications. This paper proposes a hybrid security model for securing the diagnostic text data in medical images. The proposed model is developed through integrating either 2-D discrete wavelet transform 1 level (2D-DWT-1L) or 2-D discrete wavelet transform 2 level (2D-DWT-2L) steganography technique with a proposed hybrid encryption scheme. The proposed hybrid encryption schema is built using a combination of Advanced Encryption Standard, and Rivest, Shamir, and Adleman algorithms. The proposed model starts by encrypting the secret data; then it hides the result in a cover image using 2D-DWT-1L or 2D-DWT-2L. Both color and gray-scale images are used as cover images to conceal different text sizes. The performance of the proposed system was evaluated based on six statistical parameters; the peak signal-to-noise ratio (PSNR), mean square error (MSE), bit error rate (BER), structural similarity (SSIM), structural content (SC), and correlation. The PSNR values were relatively varied from 50.59 to 57.44 in case of color images and from 50.52 to 56.09 with the gray scale images. The MSE values varied from 0.12 to 0.57 for the color images and from 0.14 to 0.57 for the gray scale images. The BER values were zero for both images, while SSIM, SC, and correlation values were ones for both images. Compared with the state-of-the-art methods, the proposed model proved its ability to hide the confidential patient’s data into a transmitted cover image with high imperceptibility, capacity, and minimal deterioration in the received stego-image.

414 citations

Journal ArticleDOI
TL;DR: A systematic literature review of the technologies for fog computing in the healthcare IoT systems field and analyzing the previous is presented, providing motivation, limitations faced by researchers, and suggestions proposed to analysts for improving this essential research field.

411 citations

Journal ArticleDOI
TL;DR: An automated detection system for Parkinson’s disease employing the convolutional neural network (CNN) employing the thirteen-layer CNN architecture which can overcome the need for the conventional feature representation stages is proposed.
Abstract: An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen-layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.

317 citations

Journal ArticleDOI
TL;DR: An innovative automated diagnosis classification method for Computed Tomography images of lungs with the assistance of Optimal Deep Neural Network (ODNN) and Linear Discriminate Analysis (LDA) is presented.

288 citations

Journal ArticleDOI
TL;DR: This paper investigated the security of medical images in IoT by utilizing an innovative cryptographic model with optimization strategies, and identified a diverse encryption algorithm with its optimization methods with the most extreme peak signal-to-noise ratio values.
Abstract: The development of the Internet of Things (IoT) is predicted to change the healthcare industry and might lead to the rise of the Internet of Medical Things. The IoT revolution is surpassing the present-day human services with promising mechanical, financial, and social prospects. This paper investigated the security of medical images in IoT by utilizing an innovative cryptographic model with optimization strategies. For the most part, the patient data are stored as a cloud server in the hospital due to which the security is vital. So another framework is required for the secure transmission and effective storage of medical images interleaved with patient information. For increasing the security level of encryption and decryption process, the optimal key will be chosen using hybrid swarm optimization, i.e., grasshopper optimization and particle swarm optimization in elliptic curve cryptography. In view of this method, the medical images are secured in IoT framework. From this execution, the results are compared and contrasted, whereas a diverse encryption algorithm with its optimization methods from the literature is identified with the most extreme peak signal-to-noise ratio values, i.e., 59.45 dB and structural similarity index as 1.

200 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: There is a need for more research to better understand, characterize and evaluate the utility of blockchain in healthcare, and the state-of-the-art in the development of blockchain applications for healthcare, their limitations and the areas for future research are highlighted.

526 citations

Journal ArticleDOI
TL;DR: The Internet of Nano Things and Tactile Internet are driving the innovation in the H-IoT applications and the future course for improving the Quality of Service (QoS) using these new technologies are identified.
Abstract: The impact of the Internet of Things (IoT) on the advancement of the healthcare industry is immense. The ushering of the Medicine 4.0 has resulted in an increased effort to develop platforms, both at the hardware level as well as the underlying software level. This vision has led to the development of Healthcare IoT (H-IoT) systems. The basic enabling technologies include the communication systems between the sensing nodes and the processors; and the processing algorithms for generating an output from the data collected by the sensors. However, at present, these enabling technologies are also supported by several new technologies. The use of Artificial Intelligence (AI) has transformed the H-IoT systems at almost every level. The fog/edge paradigm is bringing the computing power close to the deployed network and hence mitigating many challenges in the process. While the big data allows handling an enormous amount of data. Additionally, the Software Defined Networks (SDNs) bring flexibility to the system while the blockchains are finding the most novel use cases in H-IoT systems. The Internet of Nano Things (IoNT) and Tactile Internet (TI) are driving the innovation in the H-IoT applications. This paper delves into the ways these technologies are transforming the H-IoT systems and also identifies the future course for improving the Quality of Service (QoS) using these new technologies.

446 citations

Journal ArticleDOI
TL;DR: A systematic literature review of the technologies for fog computing in the healthcare IoT systems field and analyzing the previous is presented, providing motivation, limitations faced by researchers, and suggestions proposed to analysts for improving this essential research field.

411 citations