scispace - formally typeset
Search or ask a question
Author

N. Dhanaraj

Other affiliations: Purdue University
Bio: N. Dhanaraj is an academic researcher from Fermilab. The author has contributed to research in topics: Solenoid & Mu2e. The author has an hindex of 6, co-authored 17 publications receiving 96 citations. Previous affiliations of N. Dhanaraj include Purdue University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a broad range of coupon electropolishing experiments are described to ascertain the mechanism(s) by which large defects are formed near superconducting radio-frequency (SRF) cavity welds.
Abstract: A broad range of coupon electropolishing experiments are described to ascertain the mechanism(s) by which large defects are formed near superconducting radio-frequency (SRF) cavity welds. Cold-worked vs. annealed metal, the presence of a weld, and several variations of electropolishing (EP) parameters were considered. Pitting is strongly promoted by cold work and agitation of the EP solution. Welding also promotes pitting, but less so compared with the other factors above. Temperature increase during EP did not strongly affect glossiness or pitting, but the reduced viscosity made the electrolyte more susceptible to agitation. The experiments suggest that several factors that are rather benign alone are combined by the cavity forming, welding, and processing sequence to promote the formation of defects such as pits. Process changes to mitigate these risks are discussed.

31 citations

Journal ArticleDOI
TL;DR: In this article, the conceptual design of the Transport Solenoid is presented and discussed focusing on coupling issues and the proposed solutions, and the quench protection system should handle all possible quench and failure scenarios in all three solenoids.
Abstract: The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. The magnet system for this experiment is made of three warm-bore solenoids: the Production Solenoid (PS), the Transport Solenoid (TS), and the Detector Solenoid (DS). The TS is an “S-shaped” solenoid set between the other bigger solenoids. The Transport Solenoid has a warm-bore aperture of 0.5 m and field between 2.5 and 2.0 T. The PS and DS have, respectively warm-bore aperture of 1.5 m and 1.9 m, and peak field of 4.6 T and 2 T. In order to meet the field specifications, the TS starts inside the PS and ends inside the DS. The strong coupling with the adjacent solenoids poses several challenges to the design and operation of the Transport Solenoid. The coil layout has to compensate for the fringe field of the adjacent solenoids. The quench protection system should handle all possible quench and failure scenarios in all three solenoids. The support system has to be able to withstand very different forces depending on the powering status of the adjacent solenoids. In this paper, the conceptual design of the Transport Solenoid is presented and discussed focusing on these coupling issues and the proposed solutions.

15 citations

ReportDOI
01 Jul 2011
TL;DR: In this article, the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values is reviewed, and the importance of these properties is discussed.
Abstract: It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification more » of sheets for cell forming unless otherwise noted. « less

12 citations

Journal ArticleDOI
TL;DR: The reference design of the detector solenoid is summarized in this article, where the authors present detailed design specifications that are sufficient for vendors to produce the final design drawings, tooling and fabrication procedures and proceed to production.
Abstract: The Mu2e experiment at Fermilab has been approved by the Department of Energy to proceed with the development of the preliminary design. Integral to the success of Mu2e is the superconducting solenoid system. One of the three major solenoids is the detector solenoid that houses the stopping target and the detectors. The goal of the detector solenoid team is to produce detailed design specifications that are sufficient for vendors to produce the final design drawings, tooling and fabrication procedures and proceed to production. In this paper we summarize the reference design of the detector solenoid.

10 citations

Proceedings ArticleDOI
25 Jun 2007
TL;DR: In this paper, the 3.9 GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility, and the first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient.
Abstract: The 3rd harmonic 3.9 GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility [1]. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient [2]. The main problem was a multipactor in the HOM couplers, which lead to overheating and quenching of the HOM couplers. New HOM couplers with improved design are integrated in the next 9-cell cavities. In this paper we present all results of the vertical tests.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, material and manufacturing alternatives for solid oxide fuel cells are listed and analyzed, and stack manufacturing options are separated into seven categories and developed into process sequences based on the number and type of firing steps.

296 citations

Journal ArticleDOI
TL;DR: In this article, the effects of laser pulse energy, duration and repetition rates on the melt profile on both sides of the weld line were investigated considering the thermo-physical properties of the two base metals, and a sound weld with full penetration along the dissimilar interface was obtained.

65 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed review of laser welding of titanium alloys with corresponding dissimilar counterparts including steel, aluminium, magnesium, nickel, niobium, copper, etc.
Abstract: Since its inception, laser beam welding as a high-quality fusion joining process has ascertained itself as an established and state of art technology exhibiting tremendous growth in a broad range of industries. This article provides a current state of understanding and detailed review of laser welding of titanium (Ti) alloys with corresponding dissimilar counterparts including steel, aluminium, magnesium, nickel, niobium, copper, etc. Particular emphasis is placed on the influence of critical processing parameters on the metallurgical features, tensile strength, hardness variation, percentage elongation and residual stress. Process modifications to improve dissimilar laser weldability by virtue of techniques such as laser offsetting, split beam, welding-brazing, hybrid welding and materials modifications by means of the introduction of single or multiple interlayers, fillers and pre-cut grooves are exploited. Detailed and comprehensive investigations on the phenomena governing the formation and distribution of the intermetallic phase, material flow mechanisms, their relations with laser parameters and their corresponding impact on the microstructural, geometrical and mechanical aspects of the welds are thoroughly examined. The critical issues related to the evolution of defects and the corresponding remedial measures applied are explored and the characteristics of fracture features reported in the literature are summarised in thematic tables. The purpose of this review is tantamount to emphasise the benefits and the growing trend of laser welding of Ti alloys in the academic sector to better exploit the process in the industry so that the applications are explored to a greater extent.

56 citations

Journal ArticleDOI
22 Jan 2013-ACS Nano
TL;DR: An atomic-scale study of ultrathin (~5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobia hydride phases near the oxide/Nb interface is presented.
Abstract: Imaging the three-dimensional atomic-scale structure of complex interfaces has been the goal of many recent studies, due to its importance to technologically relevant areas. Combining atom-probe tomography and aberration-corrected scanning transmission electron microscopy (STEM), we present an atomic-scale study of ultrathin (∼5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobium hydride phases near the oxide/Nb interface. Nb, an elemental type-II superconductor with the highest critical temperature (Tc = 9.2 K), is the preferred material for superconducting radio frequency (SRF) cavities in next-generation particle accelerators. Nb exhibits high solubilities for oxygen and hydrogen, especially within the RF-field penetration depth, which is believed to result in SRF quality factor losses. STEM imaging and electron energy-loss spectroscopy followed by ultraviolet laser-assisted local-electrode atom-probe tomography on the same needle-like sample reveals the NbO2, Nb2O5, NbO, Nb st...

54 citations

Journal ArticleDOI
TL;DR: In this paper, Niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences.
Abstract: Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

53 citations