scispace - formally typeset
Search or ask a question
Author

N.G.A. Miller

Bio: N.G.A. Miller is an academic researcher from Babraham Institute. The author has contributed to research in topics: Capacitation & Sperm. The author has an hindex of 5, co-authored 5 publications receiving 573 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that bicarbonate causes a rapid increase in the ability of live boar spermatozoa to bind merocyanine, apparently by perturbing enzymic control processes.
Abstract: Bicarbonate/CO2 is believed to be the key in vitro effector of sperm capacitation, a process which induces major changes in the sperm plasma membrane in preparation for fertilization. In a flow cytometric study, we examined the effect of bicarbonate on boar spermatozoa using merocyanine, an impermeant lipophilic probe which binds to plasma membranes with increasing affinity as their lipid components become more disordered. We found that bicarbonate causes a rapid increase in the ability of live boar spermatozoa to bind merocyanine. First detected about 100 sec after exposure to bicarbonate and largely complete by 300 sec, this increase appears to result from individual cells within the sperm population switching from a low merocyanine-binding state to a high binding state. The majority of live spermatozoa are capable of responding in this way, and do so in proportion to bicarbonate concentration, half-maximal response being induced by about 3 mM bicarbonate; however, overall population response varies greatly between ejaculates. Increased merocyanine stainability is observed over the whole surface area of the cell, and is reversible both with respect to temperature (it is only manifested above 30 degrees C) and with respect to presence of bicarbonate. A similar effect can be induced by phosphodiesterase inhibitors such as isobutylmethylxanthine, and enhanced by a permeant cyclic nucleotide analogue. We conclude that bicarbonate causes a major alteration in sperm plasma membrane lipid architecture, apparently by perturbing enzymic control processes. This novel action of bicarbonate may represent an initial permissive event in the capacitation sequence.

306 citations

Journal ArticleDOI
TL;DR: It is concluded that boar sperm plasma membrane lipid architecture is controlled via a target protein that is dynamically phosphorylated by cAMP‐dependent protein kinase and dephosphorylation by protein phosphatase type 1.
Abstract: Bicarbonate/CO2, a physiological effector of sperm capacitation, has been shown to induce a rapid and reversible change in the lipid architecture of the plasma membrane of live boar sperm: the change is detectable as an increase in the cells' ability to bind the fluorescent dye merocyanine, a characteristic which implied an increase in lipid packing disorder (Harrison et al. 1996. Mol Reprod Dev 45:378–391). Evidence suggested that cAMP may act as a second messenger in the system, and we have therefore investigated this cAMP-dependency in more detail. Bicarbonate stimulates cAMP levels within 1 min in a dose-dependent fashion, prior to parallel increases in merocyanine binding. Although the potent somatic cell adenylyl cyclase activator forskolin is unable to induce significant increases in cAMP or merocyanine binding, increases in merocyanine binding are inducible in a dose-dependent fashion by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole 3′,5′-cyclic monophosphothioate, a cAMP analogue highly specific in its ability to stimulate protein kinase A; moreover, the bicarbonate-induced membrane change is inhibited by H89, a specific protein kinase A inhibitor. Neither bisindolylmaleimide I (protein kinase C inhibitor) nor lavendustin A (protein tyrosine kinase inhibitor) are inhibitory. In the presence of low levels of the potent phosphodiesterase inhibitor papaverine, increases in merocyanine binding are enhanced by okadaic acid and (more effectively) by calyculin (both protein phosphatase inhibitors). We conclude that boar sperm plasma membrane lipid architecture is controlled via a target protein that is dynamically phosphorylated by cAMP-dependent protein kinase and dephosphorylated by protein phosphatase type 1. Mol. Reprod. Dev. 55:220–228, 2000. © 2000 Wiley-Liss, Inc.

130 citations

Journal ArticleDOI
TL;DR: It is concluded that bicarbonate causes a loss of surface coating material with affinity for ECL and an unmasking of binding sites for SBA, SJA and PHA‐E, and a modified subpopulation of live spermatozoa is established, which appears to maximize at a rate in accord with reported capacitation times.
Abstract: Boar and ram spermatozoa were incubated in Tyrode's medium in the presence or absence of bicarbonate/CO2, a component believed essential for capacitation. At intervals, samples were stained with a range of FITC-lectins to detect changes in surface glycoconjugates, using a rapid staining technique to avoid problems of lectin toxicity. The samples were then analysed directly by flow cytometry, using propidium iodide to distinguish dead cells. In the presence of bicarbonate, a live subpopulation of spermatozoa developed, which in both animal species showed higher binding affinities towards Phaseolus Vulgaris Agglutinin (PHA-E), Sophora Japonica Agglutinin (SJA), and Soybean Agglutinin (SBA), and lower binding affinity towards Erythrina Cristagalli Lectin (ECL). In boar samples, the modified subpopulation reached a maximum after 3 hr incubation, whereas in ram samples it maximized after 1.5 hr. No changes were seen when spermatozoa were incubated in bicarbonate-free medium. The bicarbonate-induced changes in lectin binding were not due to the onset of acrosome reactions, because spermatozoa induced to undergo acrosome reactions with the ionophore A23187 displayed very different lectin-binding patterns. Tested on boar spermatozoa, seminal plasma not only inhibited but reversed the bicarbonate-induced development of the modified subpopulation. EGTA also inhibited development of boar sperm subpopulations; excess Ca2+ was unable to overcome this inhibition, suggesting that multivalent metal ions might be involved in bicarbonate's action. We conclude that bicarbonate causes a loss of surface coating material with affinity for ECL and an unmasking of binding sites for SBA, SJA and PHA-E. A modified subpopulation of live spermatozoa is thereby established, which appears to maximize at a rate in accord with reported capacitation times.

71 citations

Journal ArticleDOI
TL;DR: A method based on fluorescence resonance energy transfer was used to ensure that incorporation of the fluorescent phospholipids into the sperm proceeded via monomeric transfer and enables, for the first time, assessment of changes in lipid asymmetry under fertilizing conditions.
Abstract: Reliable protocols were established for investigating asymmetric distributions of 6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino-caproyl (C6NBD) phospholipids in the plasma membrane of boar sperm cells under physiological conditions. A method based on fluorescence resonance energy transfer was used to ensure that incorporation of the fluorescent phospholipids into the sperm proceeded via monomeric transfer. The total amount of incorporated phospholipid fluorescence and the proportion of translocated phospholipid fluorescence were determined by flow cytometric analysis before, and after, dithionite destruction of outer leaflet fluorescence. Catabolism of incorporated fluorescent phospholipids was blocked with phenylmethylsulfonyl fluoride. Membrane-damaged cells were detected with impermeant DNA stains, thereby enabling their exclusion from subsequent analyses of the flow cytometric data, whence it could be demonstrated that the labeled phospholipids were incorporated only via the outer plasma membrane leaflet in living sperm cells. Phospholipid uptake and internalization was followed at 38°C. After 1 hr of labeling, about 96% of the incorporated C6NBD-phosphatidylserine, 80% of C6NBD-phosphatidylethanolamine, 18% of C6NBD-phosphatidylcholine, and 4% of C6NBD-sphingomyelin were found to have moved across the plasma membrane bilayer to the interior of the spermatozoa. These inward movements of fluorescent phospholipids were ATP-dependent and could be blocked with sulfhydryl reagents. Movements from the inner to the outer leaflet of the sperm plasma membrane were minimal for intact fluorescent phospholipids, but were rapid and ATP-independent for fluorescent lipid metabolites. The described method enables, for the first time, assessment of changes in lipid asymmetry under fertilizing conditions. Mol. Reprod. Dev. 53:108–125, 1999. © 1999 Wiley-Liss, Inc.

71 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dynamics in adhesive and fusion properties, molecular composition and architecture of the sperm plasma membrane, as well as membrane derived signalling are reviewed.

580 citations

Journal ArticleDOI
TL;DR: It is shown that targeted disruption of the sAC gene does not affect spermatogenesis but dramatically impairs sperm motility, leading to male sterility, and plays an essential and nonredundant role in the activation of the signaling cascade controlling motility and, therefore, in fertility.
Abstract: To acquire the ability to fertilize, spermatozoa undergo complex, but at present poorly understood, activation processes The intracellular rise of cAMP produced by the bicarbonate-dependent soluble adenylyl cyclase (sAC) has been suggested to play a central role in initiating the cascade of the events that culminates in spermatozoa maturation Here, we show that targeted disruption of the sAC gene does not affect spermatogenesis but dramatically impairs sperm motility, leading to male sterility sAC mutant spermatozoa are characterized by a total loss of forward motility and are unable to fertilize oocytes in vitro Interestingly, motility in sAC mutant spermatozoa can be restored on cAMP loading, indicating that the motility defect observed is not caused by a structural defect We, therefore, conclude that sAC plays an essential and nonredundant role in the activation of the signaling cascade controlling motility and, therefore, in fertility The crucial role of sAC in fertility and the absence of any other obvious pathological abnormalities in sAC-deficient mice may provide a rationale for developing inhibitors that can be applied as a human male contraceptive

375 citations

Journal ArticleDOI
TL;DR: The integrity of sperm DNA can be measured at three different levels by assessing the degree of DNA-protamine condensation, the incidence of breaks and nicks in the DNA and the frequency of fragmentation of the nuclei into sub-haploid apoptotic bodies.

316 citations

Journal ArticleDOI
TL;DR: The effect of bicarbonate, a key inducer of sperm capacitation in vitro, on the transbilayer behavior of C6NBD-phospholipids in the plasma membrane of living acrosome-intact boar spermatozoa under physiological conditions has important implications with respect to sperm fertilizing function.
Abstract: A flow cytometric procedure was used to follow the effect of bicarbonate, a key inducer of sperm capacitation in vitro, on the transbilayer behavior of C6NBD-phospholipids in the plasma membrane of living acrosome-intact boar spermatozoa under physiological conditions. In the absence of bicarbonate, 97% of C6NBD-phosphatidylserine and 78% of C6NBD-phosphatidylethanolamine was rapidly translocated from the outer leaflet to the inner, whereas relatively little C6NBD-phosphatidylcholine and C6NBD-sphingomyelin was translocated (15% and 5%, respectively). Inclusion of 15 mM bicarbonate/5%CO(2) markedly slowed down the rates of translocation of the aminophospholipids without altering their final distribution, whereas it increased the proportions of C6NBD-phosphatidylcholine and C6NBD-sphingomyelin translocated (30% and 20%, respectively). Bicarbonate activated very markedly the outward translocation of all four phospholipid classes. The changes in C6NBD-phospholipid behavior were accompanied by increased membrane lipid disorder as detected by merocyanine 540, and also by increased potential for phospholipase catabolism of the C6NBD-phospholipid probes. All three changes were mediated via a cAMP-dependent protein phosphorylation pathway. We suspect that the changes result from an activation of the non- specific bidirectional translocase ('scramblase'). They have important implications with respect to sperm fertilizing function.

314 citations

Journal ArticleDOI
TL;DR: It is found that bicarbonate causes a rapid increase in the ability of live boar spermatozoa to bind merocyanine, apparently by perturbing enzymic control processes.
Abstract: Bicarbonate/CO2 is believed to be the key in vitro effector of sperm capacitation, a process which induces major changes in the sperm plasma membrane in preparation for fertilization. In a flow cytometric study, we examined the effect of bicarbonate on boar spermatozoa using merocyanine, an impermeant lipophilic probe which binds to plasma membranes with increasing affinity as their lipid components become more disordered. We found that bicarbonate causes a rapid increase in the ability of live boar spermatozoa to bind merocyanine. First detected about 100 sec after exposure to bicarbonate and largely complete by 300 sec, this increase appears to result from individual cells within the sperm population switching from a low merocyanine-binding state to a high binding state. The majority of live spermatozoa are capable of responding in this way, and do so in proportion to bicarbonate concentration, half-maximal response being induced by about 3 mM bicarbonate; however, overall population response varies greatly between ejaculates. Increased merocyanine stainability is observed over the whole surface area of the cell, and is reversible both with respect to temperature (it is only manifested above 30 degrees C) and with respect to presence of bicarbonate. A similar effect can be induced by phosphodiesterase inhibitors such as isobutylmethylxanthine, and enhanced by a permeant cyclic nucleotide analogue. We conclude that bicarbonate causes a major alteration in sperm plasma membrane lipid architecture, apparently by perturbing enzymic control processes. This novel action of bicarbonate may represent an initial permissive event in the capacitation sequence.

306 citations