scispace - formally typeset
Search or ask a question
Author

N. Graber

Bio: N. Graber is an academic researcher from Novartis. The author has contributed to research in topics: Total analysis system & Process (engineering). The author has an hindex of 2, co-authored 2 publications receiving 2884 citations.

Papers
More filters
Journal ArticleDOI
Andreas Manz1, N. Graber1, H.M. Widmer1
TL;DR: In this paper, a modular construction of a miniaturized "total chemical analysis system" is proposed, and theoretical performances of such systems based on flow injection analysis, chromatography and electrophoresis are compared with those of existing chemical sensors and analysis systems.
Abstract: Following the trend towards smaller channel inner diameter for better separation performance and shorter channel length for shorter transport time, a modular construction of a miniaturized 'total chemical analysis system' is proposed. The theoretical performances of such systems based on flow injection analysis, chromatography and electrophoresis, are compared with those of existing chemical sensors and analysis systems.

3,017 citations

Journal ArticleDOI
N. Graber1, H. Lüdi1, H.M. Widmer1
TL;DR: It is concluded that, for the present, chemical sensors must be integrated into 'total analysis systems' and developed along with an appropriate metrology to solve process analytical problems.
Abstract: A possible strategy for the successful use of chemical sensors in industry is demonstrated by means of already-realized, state-of-the-art process and environmental analytical applications. We conclude that, for the present, chemical sensors must be integrated into 'total analysis systems' and developed along with an appropriate metrology to solve process analytical problems.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes to devices that handle aqueous solutions.
Abstract: Microfluidic devices are finding increasing application as analytical systems, biomedical devices, tools for chemistry and biochemistry, and systems for fundamental research. Conventional methods of fabricating microfluidic devices have centered on etching in glass and silicon. Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes than these conventional methods to devices that handle aqueous solutions. These soft-lithographic methods are based on rapid prototyping and replica molding and are more accessible to chemists and biologists working under benchtop conditions than are the microelectronics-derived methods because, in soft lithography, devices do not need to be fabricated in a cleanroom. This paper describes devices fabricated in PDMS for separations, patterning of biological and nonbiological material, and components for integrated systems.

3,344 citations

Journal ArticleDOI
Andreas Manz1, N. Graber1, H.M. Widmer1
TL;DR: In this paper, a modular construction of a miniaturized "total chemical analysis system" is proposed, and theoretical performances of such systems based on flow injection analysis, chromatography and electrophoresis are compared with those of existing chemical sensors and analysis systems.
Abstract: Following the trend towards smaller channel inner diameter for better separation performance and shorter channel length for shorter transport time, a modular construction of a miniaturized 'total chemical analysis system' is proposed. The theoretical performances of such systems based on flow injection analysis, chromatography and electrophoresis, are compared with those of existing chemical sensors and analysis systems.

3,017 citations

Journal ArticleDOI
TL;DR: In this article, the physical mechanisms and the main experimental parameters involved in femtosecond laser micromachining of transparent materials, and important emerging applications of the technology are described.
Abstract: Femtosecond laser micromachining can be used either to remove materials or to change a material's properties, and can be applied to both absorptive and transparent substances. Over the past decade, this technique has been used in a broad range of applications, from waveguide fabrication to cell ablation. This review describes the physical mechanisms and the main experimental parameters involved in the femtosecond laser micromachining of transparent materials, and important emerging applications of the technology. Interactions between laser and matter are fascinating and have found a wide range of applications. This article gives an overview of the fundamental physical mechanisms in the processing of transparent materials using ultrafast lasers, as well as important emerging applications of the technology.

2,533 citations

Journal ArticleDOI
13 Mar 2014-Nature
TL;DR: The progress made by lab-on-a-chip microtechnologies in recent years is analyzed, and the clinical and research areas in which they have made the greatest impact are discussed.
Abstract: Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.

2,276 citations

Journal ArticleDOI
27 Jul 2006-Nature
TL;DR: Highly integrated microdevices show great promise for basic biomedical and pharmaceutical research, and robust and portable point-of-care devices could be used in clinical settings, in both the developed and the developing world.
Abstract: Microsystems create new opportunities for the spatial and temporal control of cell growth and stimuli by combining surfaces that mimic complex biochemistries and geometries of the extracellular matrix with microfluidic channels that regulate transport of fluids and soluble factors. Further integration with bioanalytic microsystems results in multifunctional platforms for basic biological insights into cells and tissues, as well as for cell-based sensors with biochemical, biomedical and environmental functions. Highly integrated microdevices show great promise for basic biomedical and pharmaceutical research, and robust and portable point-of-care devices could be used in clinical settings, in both the developed and the developing world.

2,082 citations