scispace - formally typeset
Search or ask a question
Author

N. Larsen

Bio: N. Larsen is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Oligomer restriction & Molecular probe. The author has an hindex of 1, co-authored 1 publications receiving 592 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Oligonucleotide Probe Database (OPD) is designed and modified to include multiple probe versions and also to provide additional identifying information, and a method of standardizing the nomenclature for oligon nucleotide probes and PCR primers that is both unambiguous and informative is suggested.
Abstract: The use of oligonucleotide hybridization probes and PCR primers has become widespread in microbial ecology and environmental microbiology (for reviews, see references 3, 5, 7, 17, and 21), and descriptions of probe applications are abundant in the literature. We have encountered, however, a number of difficulties when relying on the literature for information on probes and primers: (i) probe design, characterization, and application data are scattered throughout the literature and therefore are not easily available; (ii) probe nomenclature is not standardized, making it difficult to recognize a particular probe and evaluate results obtained with that probe; (iii) probes are often designed empirically and used without thorough experimental characterization, making it difficult to interpret experimental results; and (iv) information on the application of individual probes is often not published in detail in the original probe description since the value of some data becomes apparent only as a result of observations made subsequent to publication (e.g., hybridization buffer composition, formamide concentration, membrane supplier and lot number, target group specificity). We designed the Oligonucleotide Probe Database (OPD) to address these concerns. The OPD centralizes information related to the design and use of oligonucleotide probes and PCR primers. The database was originally designed in Microsoft Access Version 2.0 and then converted to Hypertext Transfer Markup Language with PERL scripts. The current data set contains 96 hybridization probes and PCR primers used in microbial ecology and environmental microbiology, published by the authors as well as from direct on-line submissions to OPD. The majority of the probes in the current data set target rRNA, but the database is designed to accommodate probes targeting other gene families. For each probe or primer, the information in the OPD includes design and characterization data important for probe and primer use, including a standardized name, probe sequence, nucleotide position within the target gene, optimal hybridization and wash conditions (or annealing conditions for PCR primers), intended target group, experimentally validated target group specificity, and original citations. Much of the experimental data available in the database were not included in the original publications describing the probes. Standardization of oligonucleotide probe nomenclature. A source of much confusion and frustration during the use of probes or PCR primers designed and characterized in different laboratories has been the absence of a standardized probe nomenclature. Stahl and Amann (18) have previously attempted to address this problem for phylogenetic probes with a nomenclature consisting of three to five letters representing phylogenetic specificity, followed by a number indicating the 59 position on the rRNA complementary to the 39 end of an antisense probe or PCR primer or identical to the 59 end of a sense primer. Limitations to this nomenclature system are apparent when several versions of a probe that have the same target specificity and nucleotide position exist. We modified the nomenclature originally utilized by Stahl and Amann to include multiple probe versions and also to provide additional identifying information. We suggest a method of standardizing the nomenclature for oligonucleotide probes and PCR primers that is both unambiguous and informative. The name for an oligonucleotide probe consists of seven components combined sequentially. These components are discussed below. An example demonstrating construction of probe nomenclature for a small-subunit rRNA-targeted probe is given in parentheses.

608 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.
Abstract: 16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.

5,346 citations

Journal ArticleDOI
TL;DR: PCR primers 63f and 1387r were found to be more useful for 16S rRNA gene amplification in ecological and systematic studies than PCR amplimers that are currently more generally used.
Abstract: We report the design and evaluation of PCR primers 63f and 1387r for amplification of 16S rRNA genes from bacteria. Their specificity and efficacy were tested systematically with a variety of bacterial species and environmental samples. They were found to be more useful for 16S rRNA gene amplification in ecological and systematic studies than PCR amplimers that are currently more generally used.

1,582 citations

Journal ArticleDOI
TL;DR: The majority of generated rDNA sequences did not correspond to known organisms and clearly derived from hitherto unknown species within this human gut microflora, including Clostridium coccoides and Eubacterium rectale.
Abstract: The human intestinal tract harbors a complex microbial ecosystem which plays a key role in nutrition and health. Although this microbiota has been studied in great detail by culture techniques, microscopic counts on human feces suggest that 60 to 80% of the observable bacteria cannot be cultivated. Using comparative analysis of cloned 16S rRNA gene (rDNA) sequences, we have investigated the bacterial diversity (both cultivated and noncultivated bacteria) within an adult-male fecal sample. The 284 clones obtained from 10-cycle PCR were classified into 82 molecular species (at least 98% similarity). Three phylogenetic groups contained 95% of the clones: the Bacteroides group, the Clostridium coccoides group, and the Clostridium leptum subgroup. The remaining clones were distributed among a variety of phylogenetic clusters. Only 24% of the molecular species recovered corresponded to described organisms (those whose sequences were available in public databases), and all of these were established members of the dominant human fecal flora (e.g., Bacteroides thetaiotaomicron, Fusobacterium prausnitzii, and Eubacterium rectale). However, the majority of generated rDNA sequences (76%) did not correspond to known organisms and clearly derived from hitherto unknown species within this human gut microflora.

1,464 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore potential causes and the extent of bias in PCR amplification of 16S ribosomal DNAs (rDNAs), genomic DNAs of two closely and one distantly related bacterial species were mixed and amplified with universal, degenerate primers.
Abstract: Bias introduced by the simultaneous amplification of specific genes from complex mixtures of templates remains poorly understood. To explore potential causes and the extent of bias in PCR amplification of 16S ribosomal DNAs (rDNAs), genomic DNAs of two closely and one distantly related bacterial species were mixed and amplified with universal, degenerate primers. Quantification and comparison of template and product ratios showed that there was considerable and reproducible overamplification of specific templates. Variability between replicates also contributed to the observed bias but in a comparatively minor way. Based on these initial observations, template dosage and differences in binding energies of permutations of the degenerate, universal primers were tested as two likely causes of this template-specific bias by using 16S rDNA templates modified by site-directed mutagenesis. When mixtures of mutagenized templates containing AT- and GC-rich priming sites were used, templates containing the GC-rich permutation amplified with higher efficiency, indicating that different primer binding energies may to a large extent be responsible for overamplification. In contrast, gene copy number was found to be an unlikely cause of the observed bias. Similarly, amplification from DNA extracted from a natural community to which different amounts of genomic DNA of a single bacterial species were added did not affect relative product ratios. Bias was reduced considerably by using high template concentrations, by performing fewer cycles, and by mixing replicate reaction preparations.

1,454 citations

Journal ArticleDOI
TL;DR: Novel molecular identification methods were used to verify the data obtained by traditional culture methods and to validate the culture independent fluorescent in situ hybridization (FISH) technique, confirming the differences in development of intestinal flora between breast-fed and formula-fed infants.
Abstract: Background:An obvious difference between breast-fed and formula-fed newborn infants is the development of the intestinal flora, considered to be of importance for protection against harmful micro-organisms and for the maturation of the intestinal immune system. In this study, novel molecular

1,307 citations