scispace - formally typeset
Search or ask a question
Author

N.M. Kroll

Bio: N.M. Kroll is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Photonic crystal & Collider. The author has an hindex of 12, co-authored 48 publications receiving 938 citations.

Papers
More filters
Proceedings ArticleDOI
01 Jan 1999
TL;DR: In this article, the S-matrix of a smooth transition from a rectangular waveguide to a circular waveguide is designed to preserve common reflection symmetries, and the modal connections are one to one and order preserving.
Abstract: We present the design and analysis for a set of smooth transitions from rectangular to circular waveguide that preserves their common reflection symmetries. The S-matrix of the transition connects modes of the same symmetry class, and for a sufficiently adiabatic transition preserves their TE (or TM) character. It is then also non-reflecting and, in the absence of degeneracy, its modal connections are one to one and order preserving. This property enables us to carry out all of the RF manipulations in the more easily handled over-moded rectangular waveguide.

24 citations

Proceedings ArticleDOI
01 Jul 1992
TL;DR: In this article, the authors introduce a new accelerator cavity design based on Photonic Band Gap (PBG) structures, which consists of a two-dimensional periodic array of high dielectric, low loss cylinders with a single removal defect, bounded on top and bottom by conducting sheets.
Abstract: We introduce a new accelerator cavity design based on Photonic Band Gap (PBG) structures. The PBG cavity consists of a two‐dimensional periodic array of high dielectric, low loss cylinders with a single removal defect, bounded on top and bottom by conducting sheets. We present the results of both numerical simulations and experimental measurements on the PBG cavity.

22 citations

Journal ArticleDOI
TL;DR: Tantawi et al. as discussed by the authors proposed the use of TE12 in circular waveguide with smooth walls for low-loss transport of rf signals in multimoded systems and described the different techniques used to generate it and receive it.
Abstract: The use of TE12 in circular waveguide with smooth walls was suggested for low-loss transport of rf signals in multimoded systems [S. G. Tantawi et al., in Advanced Accelerator Concepts: Eighth Workshop, edited by Wes Lawson, AIP Conf. Proc. No. 472 (AIP, New York, 1999), pp. 967–974]. Such systems use the same waveguide to transport different signals over different modes. In this report we detail a series of experiments designed to measure the characteristics of this mode. We also describe the different techniques used to generate it and receive it. The experiments were done at X band around a frequency of 11.424 GHz, the frequency of choice for future linear colliders at X band [The NLC Design Group, Report No. LBNL-PUB-5424, SLAC Report No. 474, Report No. UCRL-ID 124161, 1996; The JLC Design Group, KEK-REPORT-97-1, 1997]. The transportation medium is 55 m of highly overmoded circular waveguide. The design of the joining flanges is also presented.

22 citations

Book ChapterDOI
01 Jan 2001
TL;DR: In this paper, a metamaterial made of a repeated lattice of conducting, nonmagnetic elements that exhibits an effective μ and an effective e, both of which are simultaneously negative over a band of frequencies is presented.
Abstract: The response of a material to electromagnetic radiation can be entirely characterized by the material parameters: the electrical permittivity, or e, and the magnetic permeability, or μ. The range of possible values for the material parameters, as dictated by fundamental considerations such as causality or thermodynamics, extends beyond that found in naturally occurring materials. We thus seek to extend the material parameter space by creating electromagnetic metamaterials—ordered composite materials that display electromagnetic properties beyond those found in naturally occurring materials. Recently, we have demonstrated a metamaterial made of a repeated lattice of conducting, nonmagnetic elements that exhibits an effective μ and an effective e, both of which are simultaneously negative over a band of frequencies [1]. Such a medium has been termed Left-Handed [2], as the electric field (E), magnetic intensity (H) and propagation vector (k) are related by a left-hand rule. We introduce the reader to the expected properties predicted by Maxwell’s equations for Left-Handed media, and describe our recent numerical and experimental work in developing and analyzing this new metamaterial.

22 citations

01 Jun 1996
TL;DR: In this article, an equivalent circuit analysis, elaborated to take account of both the lower two dipole bands and the nonuniform properties of the damping manifolds, has been carried out.
Abstract: An accelerating structure designed as described previously is nearing completion. An equivalent circuit analysis, elaborated to take account of both the lower two dipole bands and the nonuniform properties of the damping manifolds, has been carried out. The equivalent circuit has nine parameters per cell, determined by matching the dispersion curves of the three lowest modes (two dipole modes plus the manifold mode) as computed by MAFIA. This procedure is carried out for eleven selected cells, after which interpolation is used to determine the parameters for the remaining 195 cells. Because the manifold-cell coupling is strong, a numerically challenging non-perturbative treatment is required. Wakefield and other results are presented.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.
Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.

4,264 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present experimental data, numerical simulations, and analytical transfer-matrix calculations for a two-dimensional isotropic, left-handed metamaterial (LHM) at X-band microwave frequencies.
Abstract: We present experimental data, numerical simulations, and analytical transfer-matrix calculations for a two-dimensionally isotropic, left-handed metamaterial (LHM) at X-band microwave frequencies. A LHM is one that has a frequency band with simultaneously negative eeff(ω) and μeff(ω), thereby having real values of index of refraction and wave vectors, and exhibiting extended wave propagation over that band. Our physical demonstration of a two-dimensional isotropic LHM will now permit experiments to verify some of the explicit predictions of reversed electromagnetic-wave properties including negative index of refraction as analyzed by Veselago [Usp. Fiz. Nauk 92, 517 (1964), Sov. Phys. Usp. 10, 509 (1968)].

876 citations

Journal ArticleDOI
TL;DR: In this article, a quasi-analytical and self-consistent model was developed to compute the polarizabilities of split ring resonators (SRRs) and an experimental setup was also proposed for measuring the magnetic polarizability of these structures.
Abstract: This paper develops a quasi-analytical and self-consistent model to compute the polarizabilities of split ring resonators (SRRs). An experimental setup is also proposed for measuring the magnetic polarizability of these structures. Experimental data are provided and compared with theoretical results computed following the proposed model. By using a local field approach, the model is applied to the obtaining of the dispersion characteristics of discrete negative magnetic permeability and left-handed metamaterials. Two types of SRRs, namely, the so-called edge coupled- and broadside coupled- SRRs, have been considered. A comparative analysis of these two structures has been carried out in connection with their suitability for the design of metamaterials. Advantages and disadvantages of both structures are discussed.

805 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a homogenization technique in which macroscopic fields are determined via averaging the local fields obtained from a full-wave electromagnetic simulation or analytical calculation.
Abstract: Over the past several years, metamaterials have been introduced and rapidly been adopted as a means of achieving unique electromagnetic material response. In metamaterials, artificially structured—often periodically positioned—inclusions replace the atoms and molecules of conventional materials. The scale of these inclusions is smaller than that of the electromagnetic wavelength of interest, so that a homogenized description applies. We present a homogenization technique in which macroscopic fields are determined via averaging the local fields obtained from a full-wave electromagnetic simulation or analytical calculation. The field-averaging method can be applied to homogenize any periodic structure with unit cells having inclusions of arbitrary geometry and material. By analyzing the dispersion diagrams and retrieved parameters found by field averaging, we review the properties of several basic metamaterial structures. © 2006 Optical Society of America OCIS codes: 160.0160, 160.1190, 260.2110, 350.5500.

581 citations