scispace - formally typeset
Search or ask a question
Author

N. Masetti

Other affiliations: INAF
Bio: N. Masetti is an academic researcher from Andrés Bello National University. The author has contributed to research in topics: Gamma-ray burst & Blazar. The author has an hindex of 47, co-authored 238 publications receiving 7852 citations. Previous affiliations of N. Masetti include INAF.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the spectral and energy properties of 12 gamma-ray bursts with redshift estimates were investigated and a positive correlation between the estimated total (isotropic) energies in the 1-10 000 keV energy range (Erad) and redshifts z was found.
Abstract: We present the main results of a study of spectral and energetics properties of twelve gamma-ray bursts (GRBs) with redshift estimates. All GRBs in our sample were detected by BeppoSAX in a broad energy range (2-700 keV). From the redshift estimates and the good-quality BeppoSAX time-integrated spectra we deduce the main properties of GRBs in their cosmological rest frames. All spectra in our sample are satisfactorily represented by the Band model, with no significant soft X-ray excesses or spectral absorptions. We find a positive correlation between the estimated total (isotropic) energies in the 1-10 000 keV energy range (Erad) and redshifts z. Interestingly, more luminous GRBs are characterized also by larger peak energies Ep so f theirEF(E) spectra. Furthermore, more distant GRBs appear to be systematically harder in the X-ray band compared to GRBs with lower redshifts. We discuss how selection and data truncation eects could bias our results and give possible explanations for the correlations that we found.

1,247 citations

Journal ArticleDOI
16 Oct 2017-Nature
TL;DR: The spectral identification and physical properties of a bright kilonova associated with the gravitational-wave source GW170817 and γ-ray burst GRB 170817A associated with a galaxy at a distance of 40 megaparsecs from Earth are described.
Abstract: The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of gamma-rays, a gravitational wave signal, and a transient optical/near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named "macronovae" or "kilonovae", are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short gamma-ray burst at z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational wave source GW 170817 and gamma-ray burst GRB 170817A associated with a galaxy at a distance of 40 Mpc from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03-0.05 solar masses of material, including high-opacity lanthanides.

771 citations

Journal ArticleDOI
R. K. Saito1, Maren Hempel1, Dante Minniti1, Dante Minniti2, Philip W. Lucas3, Marina Rejkuba4, Ignacio Toledo5, Oscar A. Gonzalez4, Javier Alonso-García1, Mike Irwin6, Eduardo Gonzalez-Solares6, Simon Hodgkin6, James R. Lewis6, Nicholas Cross7, Valentin D. Ivanov4, Eamonn Kerins8, Jim Emerson9, M. Soto10, E. B. Amôres11, Sebastián Gurovich12, I. Dékány1, R. Angeloni1, Juan Carlos Beamin1, Márcio Catelan1, Nelson Padilla1, Manuela Zoccali13, Manuela Zoccali1, P. Pietrukowicz14, C. Moni Bidin15, Francesco Mauro15, Doug Geisler15, S. L. Folkes16, Stuart E. Sale1, Stuart E. Sale16, Jura Borissova16, Radostin Kurtev16, Andrea Veronica Ahumada17, Andrea Veronica Ahumada4, M. V. Alonso17, M. V. Alonso12, A. Adamson, Julia Ines Arias10, Reba M. Bandyopadhyay18, Rodolfo H. Barbá10, Rodolfo H. Barbá19, Beatriz Barbuy20, Gustavo Baume21, Luigi R. Bedin13, Andrea Bellini22, Robert A. Benjamin23, Eduardo Luiz Damiani Bica24, Charles Jose Bonatto24, Leonardo Bronfman25, Giovanni Carraro4, André-Nicolas Chené15, André-Nicolas Chené16, Juan J. Clariá17, J. R. A. Clarke16, Carlos Contreras3, A. Corvillon1, R. de Grijs26, R. de Grijs27, Bruno Dias20, Janet E. Drew3, C. Farina21, Carlos Feinstein21, E. Fernández-Lajús21, Roberto Claudio Gamen21, Wolfgang Gieren15, Bertrand Goldman28, Carlos González-Fernández29, R. J. J. Grand30, G. Gunthardt17, Nigel Hambly7, Margaret M. Hanson31, Krzysztof G. Hełminiak1, Melvin G. Hoare32, L. Huckvale8, Andrés Jordán1, Karen Kinemuchi33, A. Longmore34, Martin Lopez-Corredoira35, Martin Lopez-Corredoira36, Thomas J. Maccarone37, Daniel J. Majaess38, Eric Martin36, N. Masetti, Ronald E. Mennickent15, I. F. Mirabel, Lorenzo Monaco4, Lorenzo Morelli22, Veronica Motta16, T. Palma17, M. C. Parisi17, Quentin A. Parker39, Quentin A. Parker40, F. Peñaloza16, Grzegorz Pietrzyński14, Grzegorz Pietrzyński15, Giuliano Pignata41, Bogdan Popescu31, Mike Read7, A. F. Rojas1, Alexandre Roman-Lopes10, Maria Teresa Ruiz25, Ivo Saviane4, Matthias R. Schreiber16, A. C. Schröder42, Saurabh Sharma16, Saurabh Sharma43, Michael D. Smith44, Laerte Sodré20, Joseph J. Stead32, Andrew W. Stephens, Motohide Tamura, C. Tappert16, Mark Thompson3, Elena Valenti4, Leonardo Vanzi1, Nicholas A. Walton6, W. A. Weidmann17, Albert A. Zijlstra8 
TL;DR: The ESO VISTA public survey VISTA variables in the V�a L�ctea (VVV) started in 2010 and is expected to run for about five years.
Abstract: Context The ESO public survey VISTA variables in the V�a L�ctea (VVV) started in 2010 VVV targets 562 sq deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years Aims: We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained Methods: The observations are carried out on the 4-m VISTA telescope in the ZYJHK s filters In addition to the multi-band imaging the variability monitoring campaign in the K s filter has started Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing Results: The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHK s filters taken in the 2010 observing season The typical image quality is 09 arcsec {-10 arcsec} The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHK s images in the disk area and 90% of the JHK s images in the bulge area The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge The first season catalogues contain 128 � 10 8 stellar sources in the bulge and 168 � 10 8 in the disk area detected in at least one of the photometric bands The combined, multi-band catalogues contain more than 163 � 10 8 stellar sources About 10% of these are double detections because of overlapping adjacent pointings These overlapping multiple detections are used to characterise the quality of the data The images in the JHK s bands extend typically 4 mag deeper than 2MASS The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions The astrometry for K s = 15-18 mag has rms 35-175 mas Conclusions: The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179B-2002

418 citations

Journal ArticleDOI
TL;DR: The first catalog and data release of the Swift-BAT AGN Spectroscopic Survey is presented in this article, which includes redshift determination, absorption and emission line measurements, and black hole mass and accretion rate estimates for the majority of obscured and unobscured AGNs.
Abstract: We present the first catalog and data release of the Swift-BAT AGN Spectroscopic Survey. We analyze optical spectra of the majority of the detected AGNs (77%, 642/836)based on their 14–195 keV emission in the 70-month Swift-BAT all-sky catalog. This includes redshift determination, absorption and emission-line measurements, and black hole mass and accretion rate estimates for the majority of obscured and unobscured AGNs (74%, 473/642), with 340 measured for the first time. With ~90% of sources at z 10^(21/9) cm^(−2). Seyfert 1.9, however, show a range of column densities. Compared to narrow-line AGNs in the SDSS, the X-ray-selected AGNs have a larger fraction of dusty host galaxies (Hα/Hβ > 5), suggesting that these types of AGN are missed in optical surveys. Using the [O III] λ5007/Hβ and [N II] λ6583/Hα emission-line diagnostic, about half of the sources are classified as Seyferts; ~15% reside in dusty galaxies that lack an Hβdetection, but for which the upper limits on line emission imply either a Seyfert or LINER, ~15% are in galaxies with weak or no emission lines despite high-quality spectra, and a few percent each are LINERS, composite galaxies, H II regions, or in known beamed AGNs.

244 citations

Journal ArticleDOI
TL;DR: In this paper, the afterglow of GRB 030323 was analyzed and the authors derived a conservative upper limit to the host-galaxy extinction: AV < 0.0005.
Abstract: We present photometry and spectroscopy of the afterglow of GRB 030323. VLT spectra of the afterglow show damped Lyα (DLA) absorption and low- and high-ionization lines at a redshift z = 3.3718 ± 0.0005. The inferred neutral hy- drogen column density, log N(Hi) = 21.90 ± 0.07, is larger than any (GRB- or QSO-) DLA H  column density inferred directly from Lyα in absorption. From the afterglow photometry, we derive a conservative upper limit to the host-galaxy extinction: AV < 0.5 mag. The iron abundance is (Fe/H) = −1.47 ± 0.11, while the metallicity of the gas as measured from sulphur is (S/H) = −1.26 ± 0.20. We derive an upper limit on the H2 molecular fraction of 2N(H2)/(2N(H2) + N(Hi)) < 10 −6 .I n the Lyα trough, a Lyα emission line is detected, which corresponds to a star-formation rate (not corrected for dust extinction) of roughly 1 Myr −1 . All these results are consistent with the host galaxy of GRB 030323 consisting of a low metallicity gas with a low dust content. We detect fine-structure lines of silicon, Si *, which have never been clearly detected in QSO-DLAs; this suggests that these lines are produced in the vicinity of the GRB explosion site. Under the assumption that these fine-structure levels are populated by particle collisions, we estimate the H  volume density to be nHi = 10 2 −10 4 cm −3 .H ST/ACS imaging 4 months after the burst shows an extended AB(F606W) = 28.0 ± 0.3 mag object at a distance of 0.

224 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the properties and behavior of 20 X-ray binaries that contain a dynamically confirmed black hole, 17 of which are transient systems, during the past decade, many of these transien...
Abstract: We review the properties and behavior of 20 X-ray binaries that contain a dynamically-confirmed black hole, 17 of which are transient systems. During the past decade, many of these transien...

2,174 citations

Journal ArticleDOI
TL;DR: A review of the current theoretical understanding of the physical processes believed to take place in GRB's can be found in this article, where the authors focus on the afterglow itself, the jet break in the light curve, and the optical flash that accompanies the GRB.
Abstract: Gamma-ray bursts (GRB's), short and intense pulses of low-energy $\ensuremath{\gamma}$ rays, have fascinated astronomers and astrophysicists since their unexpected discovery in the late sixties. During the last decade, several space missions---BATSE (Burst and Transient Source Experiment) on the Compton Gamma-Ray Observatory, BeppoSAX and now HETE II (High-Energy Transient Explorer)---together with ground-based optical, infrared, and radio observatories have revolutionized our understanding of GRB's, showing that they are cosmological, that they are accompanied by long-lasting afterglows, and that they are associated with core-collapse supernovae. At the same time a theoretical understanding has emerged in the form of the fireball internal-external shocks model. According to this model GRB's are produced when the kinetic energy of an ultrarelativistic flow is dissipated in internal collisions. The afterglow arises when the flow is slowed down by shocks with the surrounding circumburst matter. This model has had numerous successful predictions, like the predictions of the afterglow itself, of jet breaks in the afterglow light curve, and of the optical flash that accompanies the GRB's. This review focuses on the current theoretical understanding of the physical processes believed to take place in GRB's.

1,800 citations

15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations