scispace - formally typeset
Search or ask a question
Author

N. Spinelli

Bio: N. Spinelli is an academic researcher from Istituto Nazionale di Fisica Nucleare. The author has contributed to research in topics: Laser ablation & Mass spectrometry. The author has an hindex of 13, co-authored 44 publications receiving 1332 citations.
Topics: Laser ablation, Mass spectrometry, Lidar, Laser, Ion

Papers
More filters
Journal ArticleDOI
S. Amerio1, Salvatore Amoruso, M. Antonello, P. Aprili, Mario Armenante, F. Arneodo, A. Badertscher, B. Baiboussinov1, M. Baldo Ceolin1, G. Battistoni2, B. Bekman3, P. Benetti4, Elisa Bernardini, M. Bischofberger, A. Borio di Tigliole4, R. Brunetti4, Riccardo Bruzzese, Antonio Bueno5, E. Calligarich4, Mario Campanelli, F. Carbonara, C. Carpanese, D. Cavalli2, F. Cavanna, P. Cennini6, S. Centro1, A. Cesana2, A. Cesana7, Chang Chen8, D. Chen8, D.B. Chen1, Yi-Chun Chen8, Rosalía Cid5, David B. Cline9, K. Cieślik, A. G. Cocco, D. Corti1, Z. Dai, C. De Vecchi4, A. Dabrowska, A. Di Cicco, R. Dolfini4, Antonio Ereditato, Marta Felcini, A. D. Ferella, Arnaud Ferrari6, Arnaud Ferrari2, Federico Ferri, G. Fiorillo, S. Galli, D. García Gámez5, Y. Ge, D. Gibin1, A. Gigli Berzolari4, I. Gil-Botella, Krzysztof M. Graczyk, L. Grandi4, A. Guglielmi1, K. He8, J. Holeczek3, Xiaojing Huang8, Cezary Juszczak, D. Kielczewska10, Jan Kisiel3, T. Kozłowski, H. Kuna-Ciskal, M. Laffranchi, J. Łagoda10, Z. Li8, B. Lisowski9, F. Lu8, J. Ma8, Gianpiero Mangano, G. Mannocchi, M. Markiewicz, A. Martinez de la Ossa5, C. Matthey9, F. Mauri4, D. Mazza, A. Melgarejo5, Alessandro Menegolli4, G. Meng1, M. Messina, Jerzy W. Mietelski, C. Montanari4, Silvia Muraro2, S. Navas-Concha5, M. Nicoletto1, J. A. Nowak, G. Nurzia, C. Osuna5, S. Otwinowski9, Q. Ouyang8, O. Palamara, D. Pascoli1, L. Periale, G. Piano Mortari, A. Piazzoli4, P. Picchi11, F. Pietropaolo1, W. Półchłopek, M. C. Prata4, T. Rancati2, A. Rappoldi4, G.L. Raselli4, J. Rico, E. Rondio, Massimo Rossella4, André Rubbia, C. Rubbia4, Paola Sala2, R. Santorelli, D. A. Scannicchio4, E. Segreto, Youngho Seo9, F. Sergiampietri9, Jan T. Sobczyk, N. Spinelli, J. Stepaniak, R. Sulej12, M. Szeptycka, M. Szarska, M. Terrani7, M. Terrani2, G. C. Trinchero, Raffaele Velotta, Sandro Ventura1, C. Vignoli4, Hui Wang9, Xuan Wang, J. Woo9, G. Xu8, Z. Xu8, X. Yang9, A. Zalewska, J. Zalipska, Chao Zhang8, Q. Zhang8, S. Zhen8, W. Zipper3 
TL;DR: The ICARUS T600 liquid argon (LAr) time projection chamber (TPC) is the largest LAr TPC ever built, with a size of about 500 tons of fully imaging mass as mentioned in this paper.
Abstract: We have constructed and operated the ICARUS T600 liquid argon (LAr) time projection chamber (TPC). The ICARUS T600 detector is the largest LAr TPC ever built, with a size of about 500 tons of fully imaging mass. The design and assembly of the detector relied on industrial support and represents the applications of concepts matured in laboratory tests to the kton scale. The ICARUS T600 was commissioned for a technical run that lasted about 3 months. During this period all the detector features were extensively tested with an exposure to cosmic-rays at surface with a resulting data collection of about 30 000 events. The detector was developed as the first element of a modular design. Thanks to the concept of modularity, it will be possible to realize a detector with several ktons active mass, to act as an observatory for astroparticle and neutrino physics at the Gran Sasso Underground Laboratory and a second-generation nucleon decay experiment. In this paper a description of the ICARUS T600 is given, detailing its design specifications, assembly procedures and acceptance tests. Commissioning procedures and results of the technical run are also reported, as well as results from the off-line event reconstruction.

478 citations

Journal ArticleDOI
TL;DR: In this article, femtosecond laser ablation of silicon targets in vacuum is a viable route to the generation and deposition of nanoparticles with radii of ≈5-10 nm.
Abstract: We demonstrate that femtosecond laser ablation of silicon targets in vacuum is a viable route to the generation and deposition of nanoparticles with radii of ≈5–10 nm. The nanoparticles dynamics during expansion has been analyzed through their structureless continuum optical emission, while atoms and ions, also present in the plume, have been identified by their characteristic emission lines. Atomic force microscopy analysis of the material deposited at room temperature has allowed the characterization of the nanoparticles size distribution. Taking into account the emissivity of small particles we show that the continuum emission is a blackbody-like radiation from the nanoparticles. Our results suggest that nanoclusters are generated as a result of relaxation processes of the extreme material state reached by the irradiated target surface, in agreement with recently published theoretical studies.

204 citations

Journal ArticleDOI
Salvatore Amoruso, M. Antonello, P. Aprili, F. Arneodo, A. Badertscher, B. Baiboussinov1, M. Baldo Ceolin1, G. Battistoni2, B. Bekman3, P. Benetti4, M. Bischofberger, A. Borio di Tigliole4, R. Brunetti4, Riccardo Bruzzese, Antonio Bueno5, M. Buzzanca, E. Calligarich4, Mario Campanelli, F. Carbonara, C. Carpanese, D. Cavalli2, F. Cavanna, P. Cennini6, S. Centro1, Alessandra Cesana7, Chang Chen8, D. Chen8, D.B. Chen1, Yi-Chun Chen8, K. Cieślik, David B. Cline9, A. G. Cocco, Z. Dai, C. De Vecchi4, A. Dąbrowska, A. Di Cicco, R. Dolfini4, Antonio Ereditato, Marta Felcini, Arnaud Ferrari6, Arnaud Ferrari2, Federico Ferri, G. Fiorillo, S. Galli, Y. Ge, D. Gibin1, A. Gigli Berzolari4, I. Gil-Botella, Krzysztof M. Graczyk, L. Grandi4, A. Guglielmi1, K. He8, J. Holeczek3, Xiaojing Huang8, Cezary Juszczak, D. Kielczewska10, Jan Kisiel3, T. Kozłowski, M. Laffranchi, J. Łagoda10, Z. Li8, F. Lu8, J. Ma8, Gianpiero Mangano, M. Markiewicz, A. Martinez de la Ossa5, C. Matthey9, F. Mauri4, G. Meng1, M. Messina, C. Montanari4, Silvia Muraro2, S. Navas-Concha5, S. Otwinowski9, Q. Ouyang8, O. Palamara, D. Pascoli1, L. Periale11, G. Piano Mortari, A. Piazzoli4, P. Picchi11, F. Pietropaolo1, W. Półchłopek12, T. Rancati2, A. Rappoldi4, G.L. Raselli4, J. Rico, E. Rondio, Massimo Rossella4, André Rubbia, C. Rubbia4, Paola Sala2, R. Santorelli, D. A. Scannicchio4, E. Segreto, Youngho Seo9, F. Sergiampietri, Jan T. Sobczyk, N. Spinelli, J. Stepaniak, R. Sulej13, M. Szarska, M. Szeptycka, Mario Terrani7, Raffaele Velotta, Sandro Ventura1, C. Vignoli4, Hui Wang9, Xuan Wang, J. Woo9, G. Xu8, Z. Xu8, A. Zalewska, Chao Zhang8, Q. Zhang8, S. Zhen8, W. Zipper3 
TL;DR: In this article, electron recombination in liquid argon (LAr) has been studied by means of charged particle tracks collected in various ICARUS LAr TPC prototypes and the dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence.
Abstract: Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out.

142 citations

Journal ArticleDOI
TL;DR: In this article, the authors show the four-dimensional (4-D) distribution of the Eyjafjallajokull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010).
Abstract: . The eruption of the Icelandic volcano Eyjafjallajokull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajokull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org . A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org . During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajokull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.

91 citations

Journal ArticleDOI
Salvatore Amoruso, M. Antonello, P. Aprili, F. Arneodo, A. Badertscher, B. Baiboussinov1, M. Baldo Ceolin1, G. Battistoni2, B. Bekman3, P. Benetti4, Elisa Bernardini, M. Bischofberger, A. Borio di Tigliole4, R. Brunetti4, Riccardo Bruzzese, Antonio Bueno5, M. Buzzanca, E. Calligarich4, Mario Campanelli, F. Carbonara, C. Carpanese, D. Cavalli2, F. Cavanna, P. Cennini6, S. Centro1, Alessandra Cesana7, Chang Chen8, D. Chen8, D.B. Chen1, Yi-Chun Chen8, X Cieślik, David B. Cline9, A. G. Cocco, Z. Dai, C. De Vecchi4, A. Dabrowska, A. Di Cicco, R. Dolfini4, Antonio Ereditato, Marta Felcini, Arnaud Ferrari2, Arnaud Ferrari6, F. Ferri, G. Fiorillo, S. Galli, Y. Ge, D. Gibin1, A. Gigli Berzolari4, I. Gil-Botella, Krzysztof M. Graczyk, L. Grandi4, A. Guglielmi1, K. He8, J. Holeczek3, Xiaojing Huang8, Cezary Juszczak, D. Kielczewska10, Jan Kisiel3, T. Kozłowski, M. Laffranchi, J. Łagoda10, Z. Li8, F. Lu8, J. Ma8, Gianpiero Mangano, M. Markiewicz, A. Martinez de la Ossa5, C. Matthey9, F. Mauri4, G. Meng1, M. Messina, C. Montanari4, Silvia Muraro2, S. Navas-Concha5, G. Nurzia, S. Otwinowski9, Q. Ouyang8, O. Palamara, D. Pascoli1, L. Periale11, G. Piano Mortari, A. Piazzoli4, P. Picchi11, F. Pietropaolo1, W. Półchłopek12, T. Rancati2, A. Rappoldi4, G.L. Raselli4, J. Rico, E. Rondio, Massimo Rossella4, André Rubbia, C. Rubbia4, Paola Sala2, R. Santorelli, D. A. Scannicchio4, E. Segreto, Youngho Seo9, F. Sergiampietri, Jan T. Sobczyk, N. Spinelli, J. Stepaniak, M. Szarska, M. Szeptycka, Michal Szleper, Mario Terrani7, Raffaele Velotta, Sandro Ventura1, C. Vignoli4, Hui Wang9, Xuan Wang, J. Woo9, G. Xu8, Z. Xu8, A. Zalewska, J. Zalipska, Chao Zhang8, Q. Zhang8, S. Zhen8, W. Zipper3 
TL;DR: In this paper, the drift electron lifetime of the first half-module of the ICARUS T600 liquid argon Time Projection Chamber (LAr TPC) during a technical run that took place on surface in Pavia (Italy).
Abstract: The results reported in this paper are based on the analysis of the data recorded with the first half-module of the ICARUS T600 liquid argon Time Projection Chamber (LAr TPC), during a technical run that took place on surface in Pavia (Italy). We include results from the linearity, uniformity and calibration of the electronics, measurements on the electron drift velocity in LAr at different electric fields, as well as the LAr purity achievement of the detector. Two complementary techniques were used to measure the drift electron lifetime inside the active volume: the first, from the data of a purity monitor, gives a measurement localized in space; the second, based on the study of the signals produced by long minimum ionizing tracks crossing the detector, provides a LAr volume averaged value. Both methods yield consistent results over the whole data taking period and are compatible with an uniform LAr purity over the whole volume. The maximal drift electron lifetime value was recorded before the run stop and was about 1.8 ms. From an interpretation of the observed drift electron lifetime as a function of time, we conclude that the adopted technology would allow for drift distances exceeding 3 m.

84 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Basic diagnostics aspects of laser-induced breakdown spectroscopy are focused on and a review of the past and recent LIBS literature pertinent to this topic is presented and previous research on non-laser-based plasma literature, and the resulting knowledge, is emphasized.
Abstract: Laser-induced breakdown spectroscopy (LIBS) has become a very popular analytical method in the last decade in view of some of its unique features such as applicability to any type of sample, practically no sample preparation, remote sensing capability, and speed of analysis The technique has a remarkably wide applicability in many fields, and the number of applications is still growing From an analytical point of view, the quantitative aspects of LIBS may be considered its Achilles' heel, first due to the complex nature of the laser–sample interaction processes, which depend upon both the laser characteristics and the sample material properties, and second due to the plasma–particle interaction processes, which are space and time dependent Together, these may cause undesirable matrix effects Ways of alleviating these problems rely upon the description of the plasma excitation-ionization processes through the use of classical equilibrium relations and therefore on the assumption that the laser-induced

835 citations

Journal ArticleDOI
TL;DR: The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km as mentioned in this paper.
Abstract: The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km with much higher accuracy than previous studies conducted with accelerator neutrinos. The measurement is based on high-statistics data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies. An early arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (60.7 \pm 6.9 (stat.) \pm 7.4 (sys.)) ns was measured. This anomaly corresponds to a relative difference of the muon neutrino velocity with respect to the speed of light (v-c)/c = (2.48 \pm 0.28 (stat.) \pm 0.30 (sys.)) \times 10-5.

615 citations

Journal ArticleDOI
S. Amerio1, Salvatore Amoruso, M. Antonello, P. Aprili, Mario Armenante, F. Arneodo, A. Badertscher, B. Baiboussinov1, M. Baldo Ceolin1, G. Battistoni2, B. Bekman3, P. Benetti4, Elisa Bernardini, M. Bischofberger, A. Borio di Tigliole4, R. Brunetti4, Riccardo Bruzzese, Antonio Bueno5, E. Calligarich4, Mario Campanelli, F. Carbonara, C. Carpanese, D. Cavalli2, F. Cavanna, P. Cennini6, S. Centro1, A. Cesana2, A. Cesana7, Chang Chen8, D. Chen8, D.B. Chen1, Yi-Chun Chen8, Rosalía Cid5, David B. Cline9, K. Cieślik, A. G. Cocco, D. Corti1, Z. Dai, C. De Vecchi4, A. Dabrowska, A. Di Cicco, R. Dolfini4, Antonio Ereditato, Marta Felcini, A. D. Ferella, Arnaud Ferrari2, Arnaud Ferrari6, Federico Ferri, G. Fiorillo, S. Galli, D. García Gámez5, Y. Ge, D. Gibin1, A. Gigli Berzolari4, I. Gil-Botella, Krzysztof M. Graczyk, L. Grandi4, A. Guglielmi1, K. He8, J. Holeczek3, Xiaojing Huang8, Cezary Juszczak, D. Kielczewska10, Jan Kisiel3, T. Kozłowski, H. Kuna-Ciskal, M. Laffranchi, J. Łagoda10, Z. Li8, B. Lisowski9, F. Lu8, J. Ma8, Gianpiero Mangano, G. Mannocchi, M. Markiewicz, A. Martinez de la Ossa5, C. Matthey9, F. Mauri4, D. Mazza, A. Melgarejo5, Alessandro Menegolli4, G. Meng1, M. Messina, Jerzy W. Mietelski, C. Montanari4, Silvia Muraro2, S. Navas-Concha5, M. Nicoletto1, J. A. Nowak, G. Nurzia, C. Osuna5, S. Otwinowski9, Q. Ouyang8, O. Palamara, D. Pascoli1, L. Periale, G. Piano Mortari, A. Piazzoli4, P. Picchi11, F. Pietropaolo1, W. Półchłopek, M. C. Prata4, T. Rancati2, A. Rappoldi4, G.L. Raselli4, J. Rico, E. Rondio, Massimo Rossella4, André Rubbia, C. Rubbia4, Paola Sala2, R. Santorelli, D. A. Scannicchio4, E. Segreto, Youngho Seo9, F. Sergiampietri9, Jan T. Sobczyk, N. Spinelli, J. Stepaniak, R. Sulej12, M. Szeptycka, M. Szarska, M. Terrani7, M. Terrani2, G. C. Trinchero, Raffaele Velotta, Sandro Ventura1, C. Vignoli4, Hui Wang9, Xuan Wang, J. Woo9, G. Xu8, Z. Xu8, X. Yang9, A. Zalewska, J. Zalipska, Chao Zhang8, Q. Zhang8, S. Zhen8, W. Zipper3 
TL;DR: The ICARUS T600 liquid argon (LAr) time projection chamber (TPC) is the largest LAr TPC ever built, with a size of about 500 tons of fully imaging mass as mentioned in this paper.
Abstract: We have constructed and operated the ICARUS T600 liquid argon (LAr) time projection chamber (TPC). The ICARUS T600 detector is the largest LAr TPC ever built, with a size of about 500 tons of fully imaging mass. The design and assembly of the detector relied on industrial support and represents the applications of concepts matured in laboratory tests to the kton scale. The ICARUS T600 was commissioned for a technical run that lasted about 3 months. During this period all the detector features were extensively tested with an exposure to cosmic-rays at surface with a resulting data collection of about 30 000 events. The detector was developed as the first element of a modular design. Thanks to the concept of modularity, it will be possible to realize a detector with several ktons active mass, to act as an observatory for astroparticle and neutrino physics at the Gran Sasso Underground Laboratory and a second-generation nucleon decay experiment. In this paper a description of the ICARUS T600 is given, detailing its design specifications, assembly procedures and acceptance tests. Commissioning procedures and results of the technical run are also reported, as well as results from the off-line event reconstruction.

478 citations

Journal Article
TL;DR: In this paper, the physics program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neurtrino Facility (LBNF) is described.
Abstract: The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described.

422 citations

Journal ArticleDOI
TL;DR: The European Aerosol Research Lidar Network (EARLINET) as mentioned in this paper was founded as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo-ral distribution of aerosols on a continental scale.
Abstract: The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo- ral distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive col- lection of ground-based data for the aerosol vertical distribu- tion over Europe. This paper gives an overview of the network's main de- velopments since 2000 and introduces the dedicated EAR- LINET special issue, which reports on the present innova- tive and comprehensive technical solutions and scientific re- sults related to the use of advanced lidar remote sensing tech- niques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 sta- tions in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multi- wavelength Raman lidar stations in Europe. The develop- ments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the net- work towards a more sustainable observing system, with an increase in the observing capability and a reduction of oper- ational costs. Consequently, EARLINET data have already been ex- tensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from vol- canic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite commu- nity, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observ- ing system.

417 citations