scispace - formally typeset
Search or ask a question
Author

N. T. Moldogazieva

Bio: N. T. Moldogazieva is an academic researcher from I.M. Sechenov First Moscow State Medical University. The author has contributed to research in topics: Alpha-fetoprotein & Oxidative stress. The author has an hindex of 9, co-authored 27 publications receiving 536 citations. Previous affiliations of N. T. Moldogazieva include Russian National Research Medical University.

Papers
More filters
Journal ArticleDOI
TL;DR: Experimental data evidencing the impairment in cellular functions caused by AGE/ALE accumulation under oxidative stress conditions are discussed to demonstrate that the identification of cellular dysfunctions involved in disease initiation and progression can serve as a basis for the discovery of relevant therapeutic agents.
Abstract: Oxidative stress is a consequence of the use of oxygen in aerobic respiration by living organisms and is denoted as a persistent condition of an imbalance between the generation of reactive oxygen species (ROS) and the ability of the endogenous antioxidant system (AOS) to detoxify them. The oxidative stress theory has been confirmed in many animal studies, which demonstrated that the maintenance of cellular homeostasis and biomolecular stability and integrity is crucial for cellular longevity and successful aging. Mitochondrial dysfunction, impaired protein homeostasis (proteostasis) network, alteration in the activities of transcription factors such as Nrf2 and NF-κB, and disturbances in the protein quality control machinery that includes molecular chaperones, ubiquitin-proteasome system (UPS), and autophagy/lysosome pathway have been observed during aging and age-related chronic diseases. The accumulation of ROS under oxidative stress conditions results in the induction of lipid peroxidation and glycoxidation reactions, which leads to the elevated endogenous production of reactive aldehydes and their derivatives such as glyoxal, methylglyoxal (MG), malonic dialdehyde (MDA), and 4-hydroxy-2-nonenal (HNE) giving rise to advanced lipoxidation and glycation end products (ALEs and AGEs, respectively). Both ALEs and AGEs play key roles in cellular response to oxidative stress stimuli through the regulation of a variety of cell signaling pathways. However, elevated ALE and AGE production leads to protein cross-linking and aggregation resulting in an alteration in cell signaling and functioning which causes cell damage and death. This is implicated in aging and various age-related chronic pathologies such as inflammation, neurodegenerative diseases, atherosclerosis, and vascular complications of diabetes mellitus. In the present review, we discuss experimental data evidencing the impairment in cellular functions caused by AGE/ALE accumulation under oxidative stress conditions. We focused on the implications of ALEs/AGEs in aging and age-related diseases to demonstrate that the identification of cellular dysfunctions involved in disease initiation and progression can serve as a basis for the discovery of relevant therapeutic agents.

250 citations

Journal ArticleDOI
TL;DR: Recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases are discussed.
Abstract: Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.

187 citations

Journal ArticleDOI
TL;DR: This review focuses on the latest advancements evidencing that RONS-induced modifications of key redox-sensitive residues in regulatory proteins, that is, cysteine oxidation/S-sulfenylation/ S-glutathionylation /S-nitrosylation and tyrosine nitration, represent important molecular mechanisms underlying carcinogenesis.
Abstract: Cancer is a complex disorder extremely dependent on its microenvironment and highly regulated by multiple intracellular and extracellular stimuli. Studies show that reactive oxygen and nitrogen species (RONS) play key roles in cancer initiation and progression. Accumulation of RONS caused by imbalance between RONS generation and activity of antioxidant system (AOS) has been observed in many cancer types. This leads to alterations in gene expression levels, signal transduction pathways, and protein quality control machinery, that is, processes that regulate cancer cell proliferation, migration, invasion, and apoptosis. This review focuses on the latest advancements evidencing that RONS-induced modifications of key redox-sensitive residues in regulatory proteins, that is, cysteine oxidation/S-sulfenylation/S-glutathionylation/S-nitrosylation and tyrosine nitration, represent important molecular mechanisms underlying carcinogenesis. The oxidative/nitrosative modifications cause alterations in activities of intracellular effectors of MAPK- and PI3K/Akt-mediated signaling pathways, transcription factors (Nrf2, AP-1, NFκB, STAT3, and p53), components of ubiquitin/proteasomal and autophagy/lysosomal protein degradation systems, molecular chaperones, and cytoskeletal proteins. Redox-sensitive proteins, RONS-generating enzymes, and AOS components can serve as targets for relevant anticancer drugs. Chemotherapeutic agents exert their action via RONS generation and induction of cancer cell apoptosis, while drug resistance associates with RONS-induced cancer cell survival; this is exploited in selective anticancer therapy strategies. Cancer Res; 78(21); 6040-7. ©2018 AACR.

108 citations

Journal ArticleDOI
TL;DR: A review summarizes efforts of different scientific groups throughout the world in studying AFP for 50 years with emphasis on detailed description of recent achievements in this field.
Abstract: Alpha-fetoprotein (AFP) is a major mammalian embryo-specific and tumor-associated protein that is also present in small quantities in adults at normal conditions. Discovery of the phenomenon of AFP biosynthesis in carcinogenesis by G. Abelev and Yu. Tatarinov 50 years ago, in 1963, provoked intensive studies of this protein. AFPs of some mammalian species were isolated, purified and physico-chemically and immunochemically characterized. Despite the significant success in study of AFP, its three-dimensional structure, mechanisms of receptor binding along with a structure of the receptor itself and, what is the most important, its biological role in embryo- and carcinogenesis remain still obscure. Due to difficulties linked with methodological limitations, research of AFP was to some extent extinguished by the 1990s. However, over the last decade a growing number of investigations of AFP and its usage as a tumor-specific biomarker have been observed. This was caused by the use of new technologies, primarily, computer-based and genetic engineering approaches in studying of this very important oncodevelopmental protein. Our review summarizes efforts of different scientific groups throughout the world in studying AFP for 50 years with emphasis on detailed description of recent achievements in this field.

103 citations

Journal ArticleDOI
02 Apr 2020-Cancers
TL;DR: The present review focuses on cross-talks between HIF-1, glucose transporters, and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatidyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors in controlling cancer cell metabolism.
Abstract: It has been long recognized that cancer cells reprogram their metabolism under hypoxia conditions due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis in order to meet elevated requirements in energy and nutrients for proliferation, migration, and survival. However, data accumulated over recent years has increasingly provided evidence that cancer cells can revert from glycolysis to OXPHOS and maintain both reprogrammed and oxidative metabolism, even in the same tumor. This phenomenon, denoted as cancer cell metabolic plasticity or hybrid metabolism, depends on a tumor micro-environment that is highly heterogeneous and influenced by an intensity of vasculature and blood flow, oxygen concentration, and nutrient and energy supply, and requires regulatory interplay between multiple oncogenes, transcription factors, growth factors, and reactive oxygen species (ROS), among others. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism. The present review focuses on cross-talks between HIF-1, glucose transporters (GLUTs), and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatydyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors such as liver kinase B1 (LKB1) and TSC1 in controlling cancer cell metabolism. The multiple switches between metabolic pathways can underlie chemo-resistance to conventional anti-cancer therapy and should be taken into account in choosing molecular targets to discover novel anti-cancer drugs.

91 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Treatment advances have been made in the past few years, and further advancements are expected in the near future, including biomarker-driven treatments and immunotherapies, as discussed in this Review.
Abstract: The global burden of hepatocellular carcinoma (HCC) is increasing and might soon surpass an annual incidence of 1 million cases Genomic studies have established the landscape of molecular alterations in HCC; however, the most common mutations are not actionable, and only ~25% of tumours harbour potentially targetable drivers Despite the fact that surveillance programmes lead to early diagnosis in 40–50% of patients, at a point when potentially curative treatments are applicable, almost half of all patients with HCC ultimately receive systemic therapies Sorafenib was the first systemic therapy approved for patients with advanced-stage HCC, after a landmark study revealed an improvement in median overall survival from 8 to 11 months New drugs — lenvatinib in the frontline and regorafenib, cabozantinib, and ramucirumab in the second line — have also been demonstrated to improve clinical outcomes, although the median overall survival remains ~1 year; thus, therapeutic breakthroughs are still needed Immune-checkpoint inhibitors are now being incorporated into the HCC treatment armamentarium and combinations of molecularly targeted therapies with immunotherapies are emerging as tools to boost the immune response Research on biomarkers of a response or primary resistance to immunotherapies is also advancing Herein, we summarize the molecular targets and therapies for the management of HCC and discuss the advancements expected in the near future, including biomarker-driven treatments and immunotherapies

1,122 citations

Journal ArticleDOI
TL;DR: A better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Abstract: Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.

637 citations

Journal ArticleDOI
TL;DR: Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis.
Abstract: Neoplastic transformation results in a wide variety of cellular alterations that impact the growth, survival, and general behavior of affected tissue. Although genetic alterations underpin the development of neoplastic disease, epigenetic changes can exert an equally significant effect on neoplastic transformation. Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of neoplastic progression. Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Many of these changes may support neoplastic progression, and unique alterations in tumor-associated glycosylation may also serve as a distinct feature of cancer cells and therefore provide novel diagnostic and even therapeutic targets.

592 citations

Journal ArticleDOI
TL;DR: Evidence that endothelial-mesenchymal transition is an important contributor to cardiac and vascular development as well as to pathophysiological vascular remodeling is reviewed and insights into the mechanisms controlling this process are relevant to vascular remodels and are important as new therapies aimed at reversing pulmonary vascular remodelling are considered.
Abstract: All forms of pulmonary hypertension are characterized by structural changes in pulmonary arteries. Increased numbers of cells expressing α-smooth muscle (α-SM) actin is a nearly universal finding i...

315 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the molecular mechanisms of NAD -regulated physiological responses to stresses, the contribution of NAD + deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention are summarized.
Abstract: Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.

282 citations