scispace - formally typeset
Search or ask a question
Author

Na Li

Bio: Na Li is an academic researcher from Guangzhou Medical University. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 21, co-authored 44 publications receiving 8784 citations. Previous affiliations of Na Li include Max Delbrück Center for Molecular Medicine & Sichuan University.


Papers
More filters
Journal ArticleDOI
19 May 2011-Nature
TL;DR: Using a quantitative model, the first genome-scale prediction of synthesis rates of mRNAs and proteins is obtained and it is found that the cellular abundance of proteins is predominantly controlled at the level of translation.
Abstract: Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.

5,635 citations

Journal ArticleDOI
TL;DR: For example, miRDeep2 as mentioned in this paper identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples.
Abstract: microRNAs (miRNAs) are a large class of small non-coding RNAs which post-transcriptionally regulate the expression of a large fraction of all animal genes and are important in a wide range of biological processes. Recent advances in high-throughput sequencing allow miRNA detection at unprecedented sensitivity, but the computational task of accurately identifying the miRNAs in the background of sequenced RNAs remains challenging. For this purpose, we have designed miRDeep2, a substantially improved algorithm which identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples. Analyzing data from seven animal species representing the major animal clades, miRDeep2 identified miRNAs with an accuracy of 98.6-99.9% and reported hundreds of novel miRNAs. To test the accuracy of miRDeep2, we knocked down the miRNA biogenesis pathway in a human cell line and sequenced small RNAs before and after. The vast majority of the >100 novel miRNAs expressed in this cell line were indeed specifically downregulated, validating most miRDeep2 predictions. Last, a new miRNA expression profiling routine, low time and memory usage and user-friendly interactive graphic output can make miRDeep2 useful to a wide range of researchers.

2,252 citations

Journal ArticleDOI
TL;DR: A central role for miR-182 is demonstrated in the physiological regulation of IL-2-driven helper T cell–mediated immune responses and new therapeutic possibilities are opened.
Abstract: After being activated by antigen, helper T lymphocytes switch from a resting state to clonal expansion. This switch requires inactivation of the transcription factor Foxo1, a suppressor of proliferation expressed in resting helper T lymphocytes. In the early antigen-dependent phase of expansion, Foxo1 is inactivated by antigen receptor-mediated post-translational modifications. Here we show that in the late phase of expansion, Foxo1 was no longer post-translationally regulated but was inhibited post-transcriptionally by the interleukin 2 (IL-2)-induced microRNA miR-182. Specific inhibition of miR-182 in helper T lymphocytes limited their population expansion in vitro and in vivo. Our results demonstrate a central role for miR-182 in the physiological regulation of IL-2-driven helper T cell-mediated immune responses and open new therapeutic possibilities.

317 citations

Journal ArticleDOI
TL;DR: It is shown that the most prominent human-specific expression change affects genes associated with synaptic functions and represents an extreme shift in the timing of synaptic development in the prefrontal cortex, but not the cerebellum.
Abstract: Over the course of ontogenesis, the human brain and human cognitive abilities develop in parallel, resulting in a phenotype strikingly distinct from that of other primates. Here, we used microarrays and RNA-sequencing to examine human-specific gene expression changes taking place during postnatal brain development in the prefrontal cortex and cerebellum of humans, chimpanzees, and rhesus macaques. We show that the most prominent human-specific expression change affects genes associated with synaptic functions and represents an extreme shift in the timing of synaptic development in the prefrontal cortex, but not the cerebellum. Consequently, peak expression of synaptic genes in the prefrontal cortex is shifted from <1 yr in chimpanzees and macaques to 5 yr in humans. This result was supported by protein expression profiles of synaptic density markers and by direct observation of synaptic density by electron microscopy. Mechanistically, the human-specific change in timing of synaptic development involves the MEF2A-mediated activity-dependent regulatory pathway. Evolutionarily, this change may have taken place after the split of the human and the Neanderthal lineages.

221 citations

Journal ArticleDOI
07 Mar 2013-Nature
TL;DR: This corrects the article to say that the author of the paper was a post-graduate student at the Massachusetts Institute of Technology (MIT) when he wrote the paper, not a scientist.
Abstract: Nature 473, 337–342 (2011); doi:10.1038/nature10098 Mark Biggin of the Lawrence Berkeley National Laboratory contacted us, noting that our mass-spectrometry-based protein copy number estimates are lower than several literature-based values. We therefore re-analysed the scripts used for data processing, and found a scaling error that occurred during the conversion of normalized protein intensity values into absolute copy number estimates.

208 citations


Cited by
More filters
Journal ArticleDOI
21 Mar 2013-Nature
TL;DR: It is found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7.
Abstract: Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.

5,922 citations

Journal ArticleDOI
TL;DR: The Perseus software platform was developed to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data and it is anticipated that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.
Abstract: A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

5,165 citations

Journal ArticleDOI
TL;DR: Next-generation DNA sequencing has the potential to dramatically accelerate biological and biomedical research, by enabling the comprehensive analysis of genomes, transcriptomes and interactomes to become inexpensive, routine and widespread, rather than requiring significant production-scale efforts.
Abstract: DNA sequence represents a single format onto which a broad range of biological phenomena can be projected for high-throughput data collection. Over the past three years, massively parallel DNA sequencing platforms have become widely available, reducing the cost of DNA sequencing by over two orders of magnitude, and democratizing the field by putting the sequencing capacity of a major genome center in the hands of individual investigators. These new technologies are rapidly evolving, and near-term challenges include the development of robust protocols for generating sequencing libraries, building effective new approaches to data-analysis, and often a rethinking of experimental design. Next-generation DNA sequencing has the potential to dramatically accelerate biological and biomedical research, by enabling the comprehensive analysis of genomes, transcriptomes and interactomes to become inexpensive, routine and widespread, rather than requiring significant production-scale efforts.

4,458 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: Dysregulation of these ncRNAs is being found to have relevance not only to tumorigenesis, but also to neurological, cardiovascular, developmental and other diseases, and there is great interest in therapeutic strategies to counteract these perturbations.
Abstract: The role of non-coding RNAs (ncRNAs) in disease is best understood for microRNAs in cancer. However, there is increasing interest in the disease-related roles of other ncRNAs — including piRNAs, snoRNAs, T-UCRs and lncRNAs — and in using this knowledge for therapy.

4,016 citations