scispace - formally typeset
Search or ask a question
Author

Na Ta

Bio: Na Ta is an academic researcher from Arizona State University. The author has an hindex of 1, co-authored 1 publications receiving 318 citations.

Papers
More filters
Journal ArticleDOI
16 Jan 2019-Joule
TL;DR: In this paper, a facile synthesis of earth-abundant Ni single-atom catalysts on commercial carbon black was further employed in a gas-phase electrocatalytic reactor under ambient conditions.

575 citations


Cited by
More filters
Journal ArticleDOI
14 Jun 2019-Science
TL;DR: Electrochemical data suggest that the Fe3+ sites derive their superior activity from faster CO2 adsorption and weaker CO absorption than that of conventional Fe2+ sites, whereas non–precious metal catalysts have shown low to modest activity.
Abstract: Currently, the most active electrocatalysts for the conversion of CO2 to CO are gold-based nanomaterials, whereas non-precious metal catalysts have shown low to modest activity. Here, we report a catalyst of dispersed single-atom iron sites that produces CO at an overpotential as low as 80 millivolts. Partial current density reaches 94 milliamperes per square centimeter at an overpotential of 340 millivolts. Operando x-ray absorption spectroscopy revealed the active sites to be discrete Fe3+ ions, coordinated to pyrrolic nitrogen (N) atoms of the N-doped carbon support, that maintain their +3 oxidation state during electrocatalysis, probably through electronic coupling to the conductive carbon support. Electrochemical data suggest that the Fe3+ sites derive their superior activity from faster CO2 adsorption and weaker CO absorption than that of conventional Fe2+ sites.

980 citations

Journal ArticleDOI
Shufang Ji1, Yuanjun Chen1, Xiaolu Wang1, Zedong Zhang1, Dingsheng Wang1, Yadong Li1 
TL;DR: In this review, various synthetic strategies for the synthesis of SASC are summarized with concrete examples highlighting the key issues of the synthesis methods to stabilize single metal atoms on supports and to suppress their migration and agglomeration.
Abstract: Manipulating metal atoms in a controllable way for the synthesis of materials with the desired structure and properties is the holy grail of chemical synthesis. The recent emergence of single atomic site catalysts (SASC) demonstrates that we are moving toward this goal. Owing to the maximum efficiency of atom-utilization and unique structures and properties, SASC have attracted extensive research attention and interest. The prerequisite for the scientific research and practical applications of SASC is to fabricate highly reactive and stable metal single atoms on appropriate supports. In this review, various synthetic strategies for the synthesis of SASC are summarized with concrete examples highlighting the key issues of the synthesis methods to stabilize single metal atoms on supports and to suppress their migration and agglomeration. Next, we discuss how synthesis conditions affect the structure and catalytic properties of SASC before ending this review by highlighting the prospects and challenges for the synthesis as well as further scientific researches and practical applications of SASC.

629 citations

Journal ArticleDOI
TL;DR: A techno-economic analysis is presented with the goal of identifying maximally profitable products and the performance targets that must be met to ensure economic viability-metrics that include current density, Faradaic efficiency, energy efficiency, and stability.
Abstract: The electrochemical reduction of CO2 is a promising route to convert intermittent renewable energy to storable fuels and valuable chemical feedstocks. To scale this technology for industrial implementation, a deepened understanding of how the CO2 reduction reaction (CO2 RR) proceeds will help converge on optimal operating parameters. Here, a techno-economic analysis is presented with the goal of identifying maximally profitable products and the performance targets that must be met to ensure economic viability-metrics that include current density, Faradaic efficiency, energy efficiency, and stability. The latest computational understanding of the CO2 RR is discussed along with how this can contribute to the rational design of efficient, selective, and stable electrocatalysts. Catalyst materials are classified according to their selectivity for products of interest and their potential to achieve performance targets is assessed. The recent progress and opportunities in system design for CO2 electroreduction are described. To conclude, the remaining technological challenges are highlighted, suggesting full-cell energy efficiency as a guiding performance metric for industrial impact.

599 citations

Journal ArticleDOI
TL;DR: This work is expected to drive and benefit future research to rationally design surface strategies with multi-parameter synergistic impacts on the selectivity, activity and stability of next-generation CO2 reduction catalysts, thus opening new avenues for sustainable solutions to climate change, energy and environmental issues, and the potential industrial economy.
Abstract: Redox catalysis, including photocatalysis and (photo)electrocatalysis, may alleviate global warming and energy crises by removing excess CO2 from the atmosphere and converting it to value-added resources. Nano-to-atomic two-dimensional (2D) materials, clusters and single atoms are superior catalysts because of their engineerable ultrathin/small dimensions and large surface areas and have attracted worldwide research interest. Given the current gap between research and applications in CO2 reduction, our review systematically and constructively discusses nano-to-atomic surface strategies for catalysts reported to date. This work is expected to drive and benefit future research to rationally design surface strategies with multi-parameter synergistic impacts on the selectivity, activity and stability of next-generation CO2 reduction catalysts, thus opening new avenues for sustainable solutions to climate change, energy and environmental issues, and the potential industrial economy.

513 citations

Journal ArticleDOI
TL;DR: A compositional encyclopedia of SACs is provided, celebrating the 10th anniversary of the introduction of this term, and examines the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis.
Abstract: Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.

505 citations