scispace - formally typeset
Search or ask a question
Author

Nabil M. Amer

Bio: Nabil M. Amer is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Spectroscopy & Photothermal therapy. The author has an hindex of 27, co-authored 63 publications receiving 6539 citations. Previous affiliations of Nabil M. Amer include Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The theory for a sensitive spectroscopy based on the photothermal deflection of a laser beam is developed and its implications for imaging and microscopy are given, and the sources of noise are analyzed.
Abstract: The theory for a sensitive spectroscopy based on the photothermal deflection of a laser beam is developed. We consider cw and pulsed cases of both transverse and collinear photothermal deflection spectroscopy for solids, liquids, gases, and thin films. The predictions of the theory are experimentally verified, its implications for imaging and microscopy are given, and the sources of noise are analyzed. The sensitivity and versatility of photothermal deflection spectroscopy are compared with thermal lensing and photoacoustic spectroscopy.

1,267 citations

Journal ArticleDOI
TL;DR: In this article, a simple optical method for detecting the cantilever deflection in atomic force microscopy is described, and the method is incorporated in an atomic force microscope, and imaging and force measurements, in ultrahigh vacuum, are successfully performed.
Abstract: A sensitive and simple optical method for detecting the cantilever deflection in atomic force microscopy is described. The method was incorporated in an atomic force microscope, and imaging and force measurements, in ultrahigh vacuum, were successfully performed.

1,250 citations

Journal ArticleDOI
TL;DR: In this article, an atomic force microscope capable of measuring, simultaneously yet separately, lateral (frictional) and normal forces is described, and a direction-dependent feature, absent in topological images, is found when scanning stepped surfaces of NaCl(001) in ultrahigh vacuum.
Abstract: An atomic force microscope capable of measuring, simultaneously yet separately, lateral (‘‘frictional’’) and normal forces is described. A direction‐dependent feature, absent in topological images, is found when scanning stepped surfaces of NaCl (001) in ultrahigh vacuum. A simple model is presented to account for this observation.

554 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the subgap otpical absorption of undoped, singly doped, and compensated hydrogenated amorphous silicon down to 0.6 eV using the sensitive technique of photothermal deflection spectroscopy.
Abstract: We have measured the subgap otpical absorption of undoped, singly doped, and compensated hydrogenated amorphous silicon down to 0.6 eV using the sensitive technique of photothermal deflection spectroscopy. We show that this absorption is due to silicon dangling-bond defects located approx.1.4 eV below the conduction band. While doping also creates defects approx.1.4 eV below the conduction band, compensation removes them. The results suggest that for the undoped material the density-of-states maximum found in field-effect measurements is due to silicon dangling bonds.

522 citations

Journal ArticleDOI
TL;DR: A highly sensitive and simple photothermal scheme for determining optical absorptions in condensed matter samples and a comparison with thermal lens effect is given.
Abstract: We present a highly sensitive and simple photothermal scheme for determining optical absorptions in condensed matter samples. {alpha}l values as low as 10{sup -7} and 10{sup -8} were measured for thin films and coatings and for liquids, respectively. A comparison with thermal lens effect is given, and the experimental factors limiting our sensitivity are discussed.

313 citations


Cited by
More filters
Book
04 Jul 1990
TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Abstract: Preface to Third Edition. 1 Resistivity. 1.1 Introduction. 1.2 Two-Point Versus Four-Point Probe. 1.3 Wafer Mapping. 1.4 Resistivity Profiling. 1.5 Contactless Methods. 1.6 Conductivity Type. 1.7 Strengths and Weaknesses. Appendix 1.1 Resistivity as a Function of Doping Density. Appendix 1.2 Intrinsic Carrier Density. References. Problems. Review Questions. 2 Carrier and Doping Density. 2.1 Introduction. 2.2 Capacitance-Voltage (C-V). 2.3 Current-Voltage (I-V). 2.4 Measurement Errors and Precautions. 2.5 Hall Effect. 2.6 Optical Techniques. 2.7 Secondary Ion Mass Spectrometry (SIMS). 2.8 Rutherford Backscattering (RBS). 2.9 Lateral Profiling. 2.10 Strengths and Weaknesses. Appendix 2.1 Parallel or Series Connection? Appendix 2.2 Circuit Conversion. References. Problems. Review Questions. 3 Contact Resistance and Schottky Barriers. 3.1 Introduction. 3.2 Metal-Semiconductor Contacts. 3.3 Contact Resistance. 3.4 Measurement Techniques. 3.5 Schottky Barrier Height. 3.6 Comparison of Methods. 3.7 Strengths and Weaknesses. Appendix 3.1 Effect of Parasitic Resistance. Appendix 3.2 Alloys for Contacts to Semiconductors. References. Problems. Review Questions. 4 Series Resistance, Channel Length and Width, and Threshold Voltage. 4.1 Introduction. 4.2 PN Junction Diodes. 4.3 Schottky Barrier Diodes. 4.4 Solar Cells. 4.5 Bipolar Junction Transistors. 4.6 MOSFETS. 4.7 MESFETS and MODFETS. 4.8 Threshold Voltage. 4.9 Pseudo MOSFET. 4.10 Strengths and Weaknesses. Appendix 4.1 Schottky Diode Current-Voltage Equation. References. Problems. Review Questions. 5 Defects. 5.1 Introduction. 5.2 Generation-Recombination Statistics. 5.3 Capacitance Measurements. 5.4 Current Measurements. 5.5 Charge Measurements. 5.6 Deep-Level Transient Spectroscopy (DLTS). 5.7 Thermally Stimulated Capacitance and Current. 5.8 Positron Annihilation Spectroscopy (PAS). 5.9 Strengths and Weaknesses. Appendix 5.1 Activation Energy and Capture Cross-Section. Appendix 5.2 Time Constant Extraction. Appendix 5.3 Si and GaAs Data. References. Problems. Review Questions. 6 Oxide and Interface Trapped Charges, Oxide Thickness. 6.1 Introduction. 6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge. 6.3 Interface Trapped Charge. 6.4 Oxide Thickness. 6.5 Strengths and Weaknesses. Appendix 6.1 Capacitance Measurement Techniques. Appendix 6.2 Effect of Chuck Capacitance and Leakage Current. References. Problems. Review Questions. 7 Carrier Lifetimes. 7.1 Introduction. 7.2 Recombination Lifetime/Surface Recombination Velocity. 7.3 Generation Lifetime/Surface Generation Velocity. 7.4 Recombination Lifetime-Optical Measurements. 7.5 Recombination Lifetime-Electrical Measurements. 7.6 Generation Lifetime-Electrical Measurements. 7.7 Strengths and Weaknesses. Appendix 7.1 Optical Excitation. Appendix 7.2 Electrical Excitation. References. Problems. Review Questions. 8 Mobility. 8.1 Introduction. 8.2 Conductivity Mobility. 8.3 Hall Effect and Mobility. 8.4 Magnetoresistance Mobility. 8.5 Time-of-Flight Drift Mobility. 8.6 MOSFET Mobility. 8.7 Contactless Mobility. 8.8 Strengths and Weaknesses. Appendix 8.1 Semiconductor Bulk Mobilities. Appendix 8.2 Semiconductor Surface Mobilities. Appendix 8.3 Effect of Channel Frequency Response. Appendix 8.4 Effect of Interface Trapped Charge. References. Problems. Review Questions. 9 Charge-based and Probe Characterization. 9.1 Introduction. 9.2 Background. 9.3 Surface Charging. 9.4 The Kelvin Probe. 9.5 Applications. 9.6 Scanning Probe Microscopy (SPM). 9.7 Strengths and Weaknesses. References. Problems. Review Questions. 10 Optical Characterization. 10.1 Introduction. 10.2 Optical Microscopy. 10.3 Ellipsometry. 10.4 Transmission. 10.5 Reflection. 10.6 Light Scattering. 10.7 Modulation Spectroscopy. 10.8 Line Width. 10.9 Photoluminescence (PL). 10.10 Raman Spectroscopy. 10.11 Strengths and Weaknesses. Appendix 10.1 Transmission Equations. Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors. References. Problems. Review Questions. 11 Chemical and Physical Characterization. 11.1 Introduction. 11.2 Electron Beam Techniques. 11.3 Ion Beam Techniques. 11.4 X-Ray and Gamma-Ray Techniques. 11.5 Strengths and Weaknesses. Appendix 11.1 Selected Features of Some Analytical Techniques. References. Problems. Review Questions. 12 Reliability and Failure Analysis. 12.1 Introduction. 12.2 Failure Times and Acceleration Factors. 12.3 Distribution Functions. 12.4 Reliability Concerns. 12.5 Failure Analysis Characterization Techniques. 12.6 Strengths and Weaknesses. Appendix 12.1 Gate Currents. References. Problems. Review Questions. Appendix 1 List of Symbols. Appendix 2 Abbreviations and Acronyms. Index.

6,573 citations

Book ChapterDOI
16 Nov 1992
TL;DR: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease as mentioned in this paper, where OCT is an interferometric technique that detects reflected and backscattered light from tissue.
Abstract: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic tissue after therapy. The OCT images provide an advantageous combination of resolution and penetration depth, but specific studies of diagnostic sensitivity and specificity in dermatology are sparse. In order to improve OCT image quality and expand the potential of OCT, technical developments are necessary. It is suggested that the technology will be of particular interest to the routine follow-up of patients undergoing non-invasive therapy of malignant or premalignant keratinocyte tumours. It is speculated that the continued technological development can propel the method to a greater level of dermatological use.

6,095 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AU tip.
Abstract: Images and force measurements taken by an atomic‐force microscope (AFM) depend greatly on the properties of the spring and tip used to probe the sample’s surface. In this article, we describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AFM tip. Our procedure uses the AFM itself and does not require additional equipment.

3,975 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the interrelationships between the green 510 nm emission, the free-carrier concentration, and the paramagnetic oxygen vacancy density in commercial ZnO phosphors by combining photoluminescence, optical absorption, and electron paramagnetic resonance spectroscopies.
Abstract: We explore the interrelationships between the green 510 nm emission, the free‐carrier concentration, and the paramagnetic oxygen‐vacancy density in commercial ZnO phosphors by combining photoluminescence, optical‐absorption, and electron‐paramagnetic‐resonance spectroscopies. We find that the green emission intensity is strongly influenced by free‐carrier depletion at the particle surface, particularly for small particles and/or low doping. Our data suggest that the singly ionized oxygen vacancy is responsible for the green emission in ZnO; this emission results from the recombination of a photogenerated hole with the singly ionized charge state of this defect.

3,487 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations