scispace - formally typeset
N

Nabila Aghanim

Researcher at Université Paris-Saclay

Publications -  450
Citations -  110271

Nabila Aghanim is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Planck & Cosmic microwave background. The author has an hindex of 137, co-authored 416 publications receiving 100914 citations. Previous affiliations of Nabila Aghanim include University of Paris-Sud & University of Paris.

Papers
More filters
Journal ArticleDOI

Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters

Nabila Aghanim, +294 more
TL;DR: In this article, the authors present the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties.
Journal ArticleDOI

Planck 2018 results. I. Overview and the cosmological legacy of Planck

Nabila Aghanim, +254 more
TL;DR: In this paper, the authors present the cosmological legacy of the Planck satellite, which provides the strongest constraints on the parameters of the standard cosmology model and some of the tightest limits available on deviations from that model.
Journal ArticleDOI

Planck 2015 results: XIV. Dark energy and modified gravity

Peter A. R. Ade, +304 more
TL;DR: In this paper, the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario were studied, and it was shown that the density of DE at early times has to be below 2% of the critical density, even when forced to play a role for z < 50.
Journal ArticleDOI

Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters

Nabila Aghanim, +222 more
TL;DR: The Planck 2015 likelihoods as mentioned in this paper describe the 2-point correlations of CMB data, using the hybrid approach employed previously: pixel-based at the low layer and a Gaussian approximation to the distribution of spectra at the higher layer.
Journal ArticleDOI

Planck 2013 results. XI. All-sky model of thermal dust emission

Alain Abergel, +310 more
TL;DR: In this article, the authors presented an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data.