scispace - formally typeset
Search or ask a question
Author

Nabila Aghanim

Bio: Nabila Aghanim is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Planck & Cosmic microwave background. The author has an hindex of 137, co-authored 416 publications receiving 100914 citations. Previous affiliations of Nabila Aghanim include University of Paris-Sud & University of Paris.


Papers
More filters
Journal Article
TL;DR: In this paper, the authors investigate the contribution of secondary anisotropies induced by the transverse motions of clusters of galaxies to the CMB and derive the average contributions for three cosmological models.
Abstract: With the new generation of instruments for Cosmic Microwave Background (CMB) observations aiming at an ac- curacy level of a few percent in the measurement of the angular power spectrum of the anisotropies, the study of the contribu- tions due to secondary effects has gained impetus. Furthermore, a reinvestigation of the main secondary effects is crucial in order to predict and quantify their effects on the CMB and the errors that they induce in the measurements. In this paper, we investigate the contribution, to the CMB, of secondary anisotropies induced by the transverse motions of clusters of galaxies. This effect is similar to the Kaiser-Stebbins effect. In order to address this problem, we model the gravita- tional potential well of an individual structure using the Navarro, Frenk & White profile. We generalise the effect of one structure to a population of objects predicted using the Press-Schechter formalism. We simulate maps of these secondary fluctuations, compute the angular power spectrum and derive the average contributions for three cosmological models. We then investi- gate a simple method to separate this new contribution from the primary anisotropies and from the main secondary effect, the Sunyaev-Zel'dovich kinetic effect from the lensing clusters. directly related to the initial density perturbations which are the progenitors to the cosmic structures (galaxies and galaxies clus- ters) in the present universe; but which are first and foremost the relics of the very early initial conditions of the universe. Between recombination and the present time, the CMB pho- tons could have undergone various interactions with the matter and structures present along their lines of sight. Some of these in- teractions can induce additional temperature fluctuations called, secondary anisotropies because they are generated after the re- combination. Along a line of sight, one measures temperature fluctuations which are the superposition of the primary and sec- ondary anisotropies. As a result, and in the context of the future CMB experiments, accurate analysis of the data will be needed in order to account for the foreground contributions due to the secondary fluctuations. Photon-matter interactions between re- combination and the present time are due to the presence of ionised matter or to variations of the gravitational potential wells along the lines of sight. The CMB photons interact with the ionised matter mainly through Compton interactions. In fact, after recombination the universe could have been re-ionised globally or locally. Global early re-ionisation has been widely studied (see Dodelson & Jubas 1995 for a recent review and references therein). Its main effect is to either smooth or wipe out some of the primary anisotropies; but the interactions of the photons with the mat- ter in a fully ionised universe can also give rise to secondary anisotropies through the Vishniac effect (Vishniac 1987). This second order effect has maximum amplitudes for a very early re-ionisation. The case of a late inhomogeneous re-ionisation and its imprints on the CMB fluctuations has been investigated (Aghanim et al. 1996) and found to be rather important. In this case, the secondary anisotropies are due to the bulk mo- tion of ionised clouds with respect to the CMB frame. When the re-ionisation is localised in hot ionised intra-cluster me- dia the photons interact with the free electrons. The inverse Compton scattering between photons and electrons leads to the so-called Sunyaev-Zel'dovich (hereafter SZ) effect (Sunyaev & Zel'dovich1972, 1980). The Compton distortion due to the mo- tion of the electrons in the gas is called the thermal SZ effect. The kinetic SZ effect is a Doppler distortion due to the pecu- liar bulk motion of the cluster with respect to the Hubble flow. The SZ thermal effect has the unique property of depressing the

14 citations

Journal Article
TL;DR: Forni et al. as mentioned in this paper developed several statistical discriminators to test the non-gaussian nature of a signal and applied them in a cosmological context, to the study of the nature of the cosmic microwave background (CMB) anisotropies.
Abstract: In a first paper (Forni & Aghanim 1999), we developed several statistical discriminators to test the non-gaussian nature of a signal. These tests are based on the study of the coefficients in a wavelet decomposition basis. In this paper, we apply them in a cosmological context, to the study of the nature of the Cosmic Microwave Background (CMB) anisotropies. The latter represent the superposition of primary anisotropy imprints of the initial density perturbations and secondary ones due to photon interactions after recombination. In an inflationary scenario (standard Cold Dark Matter) with gaussian distributed fluctuations, we study the statistical signature of the secondary effects. More specifically, we investigate the dominant effects arising from the Compton scattering of CMB photons in ionised regions of the Universe: the Sunyaev-Zel'dovich effect of galaxy clusters and the effects of a spatially inhomogeneous re-ionisation of the Universe. Our study specifies and predicts the non-gaussian signature of the secondary anisotropies induced by these scattering effects. We find that our statistical discriminators allow us to distinguish and highlight the non-gaussian signature of a process even if it is combined with a larger gaussian one. We investigate the detectability of the secondary anisotropy non-gaussian signature in the context of the future CMB satellites (MAP and Planck Surveyor).

14 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionisation history.
Abstract: The 21-cm line fluctuations and the cosmic microwave background (CMB) are powerful probes of the epoch of reionisation of the universe. We study the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionisation history. We compute analytically the 21-cm cross-correlation with the CMB temperature anisotropy and polarisation, and we calculate the signal-to-noise (SN) ratio for its detection with Planck together with LOFAR, MWA and SKA. We find, on the one hand, that the 21-cm cross-correlation signal with CMB polarisation from the instant reionisation can be detected with an SN ratio of $\sim 1$ for LOFAR and $\sim 10$ for SKA. On the other hand, we confirm that the detection of the 21-cm cross-correlation with CMB polarisation is practically infeasible.

13 citations

Journal ArticleDOI
TL;DR: In this article, the results of spectroscopic redshift measurements for the galaxy clusters from the first all-sky Planck catalogue of the Sunyaev-Zeldovich sources, that have been mostly identified by means of the optical observations performed previously by our team, are provided.
Abstract: We present the results of spectroscopic redshift measurements for the galaxy clusters from the first all-sky Planck catalogue of the Sunyaev-Zeldovich sources, that have been mostly identified by means of the optical observations performed previously by our team (Planck Collaboration, 2015a). The data on 13 galaxy clusters at redshifts from z=~0.2 to z=~0.8, including the improved identification and redshift measurement for the cluster PSZ1 G141.73+14.22 at z=0.828, are provided. The measurements were done using the data from Russian-Turkish 1.5-m telescope (RTT-150), 2.2-m Calar Alto Observatory telescope, and 6-m SAO RAS telescope (Bolshoy Teleskop Azimutalnyi, BTA).

13 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the effect of increasing accuracy on the scaling relation calibration, finding improved constraints on the cosmological parameters, which is a subdominant source of systematics for current data.
Abstract: Galaxy clusters are a recent cosmological probe. The precision and accuracy of the cosmological parameters inferred from these objects are affected by the knowledge of cluster physics, entering the analysis through the mass-observable scaling relations, and the theoretical description of their mass and redshift distribution, modelled by the mass function. In this work, we forecast the impact of different modelling of these ingredients for clusters detected by future optical and near-IR surveys. We consider the standard cosmological scenario and the case with a time-dependent equation of state for dark energy. We analyse the effect of increasing accuracy on the scaling relation calibration, finding improved constraints on the cosmological parameters. This higher accuracy exposes the impact of the mass function evaluation, which is a subdominant source of systematics for current data. We compare two different evaluations for the mass function. In both cosmological scenarios, the use of different mass functions leads to biases in the parameter constraints. For the $\Lambda$CDM model, we find a $1.6 \, \sigma$ shift in the $(\Omega_m,\sigma_8)$ parameter plane and a discrepancy of $\sim 7 \, \sigma$ for the redshift evolution of the scatter of the scaling relations. For the scenario with a time-evolving dark energy equation of state, the assumption of different mass functions results in a $\sim 8 \, \sigma$ tension in the $w_0$ parameter. These results show the impact, and the necessity for a precise modelling, of the interplay between the redshift evolution of the mass function and of the scaling relations in the cosmological analysis of galaxy clusters.

13 citations


Cited by
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Abstract: We present the first public version (v02) of the open-source and community-developed Python package, Astropy This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

9,720 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations