scispace - formally typeset
Search or ask a question
Author

Nacho Molina

Bio: Nacho Molina is an academic researcher from University of Strasbourg. The author has contributed to research in topics: Transcription factor & Transcription (biology). The author has an hindex of 17, co-authored 35 publications receiving 1803 citations. Previous affiliations of Nacho Molina include French Institute of Health and Medical Research & University of Basel.

Papers
More filters
Journal ArticleDOI
22 Apr 2011-Science
TL;DR: This work established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells, demonstrating that bursting kinetics are highly gene-specific.
Abstract: In prokaryotes and eukaryotes, most genes appear to be transcribed during short periods called transcriptional bursts, interspersed by silent intervals. We describe how such bursts generate gene-specific temporal patterns of messenger RNA (mRNA) synthesis in mammalian cells. To monitor transcription at high temporal resolution, we established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells. Mathematical modeling identified gene-specific on- and off-switching rates in transcriptional activity and mean numbers of mRNAs produced during the bursts. Transcriptional kinetics were markedly altered by cis-regulatory DNA elements. Our analysis demonstrated that bursting kinetics are highly gene-specific, reflecting refractory periods during which genes stay inactive for a certain time before switching on again.

891 citations

Journal ArticleDOI
TL;DR: To enable easy viewing of the regulatory site annotations in the context of other features annotated on the genomes, the sites are displayed using the GBrowse genome browser interface and can be queried based on any annotated genomic feature.
Abstract: SwissRegulon (http://www.swissregulon.unibas.ch) is a database containing genome-wide annotations of regulatory sites in the intergenic regions of genomes. The regulatory site annotations are produced using a number of recently developed algorithms that operate on multiple alignments of orthologous intergenic regions from related genomes in combination with, whenever available, known sites from the literature, and ChIP-on-chip binding data. Currently SwissRegulon contains annotations for yeast and 17 prokaryotic genomes. The database provides information about the sequence, location, orientation, posterior probability and, whenever available, binding factor of each annotated site. To enable easy viewing of the regulatory site annotations in the context of other features annotated on the genomes, the sites are displayed using the GBrowse genome browser interface and can be queried based on any annotated genomic feature. The database can also be queried for regulons, i.e. sites bound by a common factor.

153 citations

Journal ArticleDOI
TL;DR: Combining single-cell time-lapse luminescence imaging with stochastic modeling of the time traces quantified the transcriptional responses of the endogenous connective tissue growth factor gene to different physiological stimuli: serum and TGF-β1.
Abstract: Mammalian genes are often transcribed discontinuously as short bursts of RNA synthesis followed by longer silent periods. However, how these “on” and “off” transitions, together with the burst sizes, are modulated in single cells to increase gene expression upon stimulation is poorly characterized. By combining single-cell time-lapse luminescence imaging with stochastic modeling of the time traces, we quantified the transcriptional responses of the endogenous connective tissue growth factor gene to different physiological stimuli: serum and TGF-β1. Both stimuli caused a rapid and acute increase in burst sizes. Whereas TGF-β1 showed prolonged transcriptional activation mediated by an increase of transcription rate, serum stimulation resulted in a large and temporally tight first transcriptional burst, followed by a refractory period in the range of hours. Our study thus reveals how different physiological stimuli can trigger kinetically distinct transcriptional responses of the same gene.

136 citations

Journal ArticleDOI
TL;DR: Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome‐wide in mammals, as revealed by single‐cell RNA‐seq.
Abstract: Mammalian transcription occurs stochastically in short bursts interspersed by silent intervals showing a refractory period. However, the underlying processes and consequences on fluctuations in gene products are poorly understood. Here, we use single allele time-lapse recordings in mouse cells to identify minimal models of promoter cycles, which inform on the number and durations of rate-limiting steps responsible for refractory periods. The structure of promoter cycles is gene specific and independent of genomic location. Typically, five rate-limiting steps underlie the silent periods of endogenous promoters, while minimal synthetic promoters exhibit only one. Strikingly, endogenous or synthetic promoters with TATA boxes show simplified two-state promoter cycles. Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome-wide in mammals, as revealed by single-cell RNA-seq. These findings have implications for basic transcription biology and shed light on interpreting single-cell RNA-counting experiments.

117 citations

Journal ArticleDOI
TL;DR: MotEvo is presented, a integrated suite of Bayesian probabilistic methods for the prediction of TFBSs and inference of regulatory motifs from multiple alignments of phylogenetically related DNA sequences, which incorporates all features just mentioned.
Abstract: Probabilistic approaches for inferring transcription factor binding sites (TFBSs) and regulatory motifs from DNA sequences have been developed for over two decades. Previous work has shown that prediction accuracy can be significantly improved by incorporating features such as the competition of multiple transcription factors (TFs) for binding to nearby sites, the tendency of TFBSs for co-regulated TFs to cluster and form cis-regulatory modules and explicit evolutionary modeling of conservation of TFBSs across orthologous sequences. However, currently available tools only incorporate some of these features, and significant methodological hurdles hampered their synthesis into a single consistent probabilistic framework.; We present MotEvo, a integrated suite of Bayesian probabilistic methods for the prediction of TFBSs and inference of regulatory motifs from multiple alignments of phylogenetically related DNA sequences, which incorporates all features just mentioned. In addition, MotEvo incorporates a novel model for detecting unknown functional elements that are under evolutionary constraint, and a new robust model for treating gain and loss of TFBSs along a phylogeny. Rigorous benchmarking tests on ChIP-seq datasets show that MotEvo's novel features significantly improve the accuracy of TFBS prediction, motif inference and enhancer prediction.; Source code, a user manual and files with several example applications are available at www.swissregulon.unibas.ch.

93 citations


Cited by
More filters
Book ChapterDOI
31 Jan 1963

2,885 citations

Journal ArticleDOI
TL;DR: Current knowledge of transcription factor function from genomic and genetic studies is reviewed and how different strategies, including extensive cooperative regulation, progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development are discussed.
Abstract: Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor binding and RNA expression. Such studies reveal patterns that, at first glance, seem to contrast with the robustness of the developmental processes they encode. Here, we review our current knowledge of transcription factor function from genomic and genetic studies and discuss how different strategies, including extensive cooperative regulation (both direct and indirect), progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development.

1,774 citations

Journal ArticleDOI
TL;DR: Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling.
Abstract: Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.

1,538 citations

Journal ArticleDOI
23 Mar 2017-Cell
TL;DR: In this paper, a phase separation model was proposed to explain established and recently described features of transcriptional control, such as the formation of super-enhancers, the sensitivity of superenhancers to perturbation, the transcriptional bursting patterns of enhancers, and the ability of an enhancer to produce simultaneous activation at multiple genes.

1,162 citations

Journal ArticleDOI
TL;DR: Analysis of biopsy specimens from patients with melanoma confirmed interferon signature enrichment and upregulation of gene targets for STAT1/STAT2/STAT3 and IRF1 in anti-PD-1-responding tumors.

1,111 citations