scispace - formally typeset
Search or ask a question
Author

Nadathur Satish

Bio: Nadathur Satish is an academic researcher from Intel. The author has contributed to research in topics: Speedup & Data structure. The author has an hindex of 38, co-authored 94 publications receiving 6998 citations. Previous affiliations of Nadathur Satish include University of California, Berkeley.


Papers
More filters
Proceedings ArticleDOI
19 Jun 2010
TL;DR: This paper discusses optimization techniques for both CPU and GPU, analyzes what architecture features contributed to performance differences between the two architectures, and recommends a set of architectural features which provide significant improvement in architectural efficiency for throughput kernels.
Abstract: Recent advances in computing have led to an explosion in the amount of data being generated. Processing the ever-growing data in a timely manner has made throughput computing an important aspect for emerging applications. Our analysis of a set of important throughput computing kernels shows that there is an ample amount of parallelism in these kernels which makes them suitable for today's multi-core CPUs and GPUs. In the past few years there have been many studies claiming GPUs deliver substantial speedups (between 10X and 1000X) over multi-core CPUs on these kernels. To understand where such large performance difference comes from, we perform a rigorous performance analysis and find that after applying optimizations appropriate for both CPUs and GPUs the performance gap between an Nvidia GTX280 processor and the Intel Core i7-960 processor narrows to only 2.5x on average. In this paper, we discuss optimization techniques for both CPU and GPU, analyze what architecture features contributed to performance differences between the two architectures, and recommend a set of architectural features which provide significant improvement in architectural efficiency for throughput kernels.

810 citations

Proceedings ArticleDOI
23 May 2009
TL;DR: The design of high-performance parallel radix sort and merge sort routines for manycore GPUs, taking advantage of the full programmability offered by CUDA, are described, which are the fastest GPU sort and the fastest comparison-based sort reported in the literature.
Abstract: We describe the design of high-performance parallel radix sort and merge sort routines for manycore GPUs, taking advantage of the full programmability offered by CUDA. Our radix sort is the fastest GPU sort and our merge sort is the fastest comparison-based sort reported in the literature. Our radix sort is up to 4 times faster than the graphics-based GPUSort and greater than 2 times faster than other CUDA-based radix sorts. It is also 23% faster, on average, than even a very carefully optimized multicore CPU sorting routine. To achieve this performance, we carefully design our algorithms to expose substantial fine-grained parallelism and decompose the computation into independent tasks that perform minimal global communication. We exploit the high-speed onchip shared memory provided by NVIDIA's GPU architecture and efficient data-parallel primitives, particularly parallel scan. While targeted at GPUs, these algorithms should also be well-suited for other manycore processors.

684 citations

Posted Content
TL;DR: In this article, the authors explore the use of neural networks as an alternative to GPs to model distributions over functions, and show that performing adaptive basis function regression with a neural network as the parametric form performs competitively with state-of-the-art GP-based approaches, but scales linearly with the number of data rather than cubically.
Abstract: Bayesian optimization is an effective methodology for the global optimization of functions with expensive evaluations. It relies on querying a distribution over functions defined by a relatively cheap surrogate model. An accurate model for this distribution over functions is critical to the effectiveness of the approach, and is typically fit using Gaussian processes (GPs). However, since GPs scale cubically with the number of observations, it has been challenging to handle objectives whose optimization requires many evaluations, and as such, massively parallelizing the optimization. In this work, we explore the use of neural networks as an alternative to GPs to model distributions over functions. We show that performing adaptive basis function regression with a neural network as the parametric form performs competitively with state-of-the-art GP-based approaches, but scales linearly with the number of data rather than cubically. This allows us to achieve a previously intractable degree of parallelism, which we apply to large scale hyperparameter optimization, rapidly finding competitive models on benchmark object recognition tasks using convolutional networks, and image caption generation using neural language models.

524 citations

Proceedings Article
06 Jul 2015
TL;DR: This work shows that performing adaptive basis function regression with a neural network as the parametric form performs competitively with state-of-the-art GP-based approaches, but scales linearly with the number of data rather than cubically, which allows for a previously intractable degree of parallelism.
Abstract: Bayesian optimization is an effective methodology for the global optimization of functions with expensive evaluations. It relies on querying a distribution over functions defined by a relatively cheap surrogate model. An accurate model for this distribution over functions is critical to the effectiveness of the approach, and is typically fit using Gaussian processes (GPs). However, since GPs scale cubically with the number of observations, it has been challenging to handle objectives whose optimization requires many evaluations, and as such, massively parallelizing the optimization. In this work, we explore the use of neural networks as an alternative to GPs to model distributions over functions. We show that performing adaptive basis function regression with a neural network as the parametric form performs competitively with state-of-the-art GP-based approaches, but scales linearly with the number of data rather than cubically. This allows us to achieve a previously intractable degree of parallelism, which we apply to large scale hyperparameter optimization, rapidly finding competitive models on benchmark object recognition tasks using convolutional networks, and image caption generation using neural language models.

503 citations

Proceedings ArticleDOI
01 Aug 2009
TL;DR: The approach extends the notion of velocity obstacles from robotics and formulates the conditions for collision free navigation as a quadratic optimization problem and uses a discrete optimization method to efficiently compute the motion of each agent.
Abstract: We present a new local collision avoidance algorithm between multiple agents for real-time simulations. Our approach extends the notion of velocity obstacles from robotics and formulates the conditions for collision free navigation as a quadratic optimization problem. We use a discrete optimization method to efficiently compute the motion of each agent. This resulting algorithm can be parallelized by exploiting data-parallelism and thread-level parallelism. The overall approach, ClearPath, is general and can robustly handle dense scenarios with tens or hundreds of thousands of heterogeneous agents in a few milli-seconds. As compared to prior collision avoidance algorithms, we observe more than an order of magnitude performance improvement.

336 citations


Cited by
More filters
Proceedings ArticleDOI
Mark Sandler1, Andrew Howard1, Menglong Zhu1, Andrey Zhmoginov1, Liang-Chieh Chen1 
18 Jun 2018
TL;DR: MobileNetV2 as mentioned in this paper is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers and intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity.
Abstract: In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on ImageNet [1] classification, COCO object detection [2], VOC image segmentation [3]. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as actual latency, and the number of parameters.

9,381 citations

Posted Content
Mark Sandler1, Andrew Howard1, Menglong Zhu1, Andrey Zhmoginov1, Liang-Chieh Chen1 
TL;DR: A new mobile architecture, MobileNetV2, is described that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes and allows decoupling of the input/output domains from the expressiveness of the transformation.
Abstract: In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters

8,807 citations

Journal ArticleDOI
TL;DR: The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility, and for the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.
Abstract: Background: PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for faster and scalable implementations of key functions, such as logistic regression, linkage disequilibrium estimation, and genomic distance evaluation. In addition, GWAS and population-genetic data now frequently contain genotype likelihoods, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1’s primary data format. Findings: To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O √ n -time/constant-space Hardy-Weinberg equilibrium and Fisher’s exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. We have also developed an extension to the data format which adds low-overhead support for genotype likelihoods, phase, multiallelic variants, and reference vs. alternate alleles, which is the basis of our planned second release (PLINK 2.0). Conclusions: The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.

7,038 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: NASNet as discussed by the authors proposes to search for an architectural building block on a small dataset and then transfer the block to a larger dataset, which enables transferability and achieves state-of-the-art performance.
Abstract: Developing neural network image classification models often requires significant architecture engineering. In this paper, we study a method to learn the model architectures directly on the dataset of interest. As this approach is expensive when the dataset is large, we propose to search for an architectural building block on a small dataset and then transfer the block to a larger dataset. The key contribution of this work is the design of a new search space (which we call the "NASNet search space") which enables transferability. In our experiments, we search for the best convolutional layer (or "cell") on the CIFAR-10 dataset and then apply this cell to the ImageNet dataset by stacking together more copies of this cell, each with their own parameters to design a convolutional architecture, which we name a "NASNet architecture". We also introduce a new regularization technique called ScheduledDropPath that significantly improves generalization in the NASNet models. On CIFAR-10 itself, a NASNet found by our method achieves 2.4% error rate, which is state-of-the-art. Although the cell is not searched for directly on ImageNet, a NASNet constructed from the best cell achieves, among the published works, state-of-the-art accuracy of 82.7% top-1 and 96.2% top-5 on ImageNet. Our model is 1.2% better in top-1 accuracy than the best human-invented architectures while having 9 billion fewer FLOPS - a reduction of 28% in computational demand from the previous state-of-the-art model. When evaluated at different levels of computational cost, accuracies of NASNets exceed those of the state-of-the-art human-designed models. For instance, a small version of NASNet also achieves 74% top-1 accuracy, which is 3.1% better than equivalently-sized, state-of-the-art models for mobile platforms. Finally, the image features learned from image classification are generically useful and can be transferred to other computer vision problems. On the task of object detection, the learned features by NASNet used with the Faster-RCNN framework surpass state-of-the-art by 4.0% achieving 43.1% mAP on the COCO dataset.

4,384 citations

Journal ArticleDOI
01 Jan 2016
TL;DR: This review paper introduces Bayesian optimization, highlights some of its methodological aspects, and showcases a wide range of applications.
Abstract: Big Data applications are typically associated with systems involving large numbers of users, massive complex software systems, and large-scale heterogeneous computing and storage architectures. The construction of such systems involves many distributed design choices. The end products (e.g., recommendation systems, medical analysis tools, real-time game engines, speech recognizers) thus involve many tunable configuration parameters. These parameters are often specified and hard-coded into the software by various developers or teams. If optimized jointly, these parameters can result in significant improvements. Bayesian optimization is a powerful tool for the joint optimization of design choices that is gaining great popularity in recent years. It promises greater automation so as to increase both product quality and human productivity. This review paper introduces Bayesian optimization, highlights some of its methodological aspects, and showcases a wide range of applications.

3,703 citations