scispace - formally typeset
Search or ask a question
Author

Nagarajan Ranganathan

Bio: Nagarajan Ranganathan is an academic researcher from University of South Florida. The author has contributed to research in topics: Very-large-scale integration & Logic gate. The author has an hindex of 31, co-authored 157 publications receiving 3987 citations. Previous affiliations of Nagarajan Ranganathan include University of Florida & University of Central Florida.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the performance of a Gabor odd filter-based edge detector is investigated using the measures proposed by Canny and it is shown that this design criterion also holds good for a two-dimensional (2D) Gabor filter- based edge detector.

371 citations

Journal ArticleDOI
TL;DR: A high-performance flow-focusing geometry for spontaneous generation of monodispersed droplets is demonstrated, in which a two-phase flow is forced through a circular orifice integrated inside a silicon-based microchannel, exerts a ring of maximized stress around the flow and ensures controlled breakup of droplets.
Abstract: A high-performance flow-focusing geometry for spontaneous generation of monodispersed droplets is demonstrated. In this geometry, a two-phase flow is forced through a circular orifice integrated inside a silicon-based microchannel. The orifice with its cusp-like edge exerts a ring of maximized stress around the flow and ensures controlled breakup of droplets for a wide range of flow rates, forming highly periodic and reproducible dispersions. The droplet generation can be remarkably rapid, exceeding 104 s−1 for water-in-oil droplets and reaching 103 s−1 for oil-in-water droplets, being largely controlled by flow rate of the continuous phase. The droplet diameter and generation frequency are compared against a quasi-equilibrium model based on the critical Capillary number. The droplets are obtained despite the low Capillary number, below the critical value identified by the ratio of viscosities between the two phases and simple shear-flow.

277 citations

Journal ArticleDOI
TL;DR: Novel designs of reversible sequential circuits that are optimized in terms of quantum cost, delay and the garbage outputs are presented and a novel strategy of cascading a Fredkin gate at the outputs of a reversible latch is introduced to realize the designs of the Fredkin Gate based asynchronous set/reset D latch and the master-slave D flip-flop.
Abstract: Reversible logic has shown potential to have extensive applications in emerging technologies such as quantum computing, optical computing, quantum dot cellular automata as well as ultra low power VLSI circuits. Recently, several researchers have focused their efforts on the design and synthesis of efficient reversible logic circuits. In these works, the primary design focus has been on optimizing the number of reversible gates and the garbage outputs. The number of reversible gates is not a good metric of optimization as each reversible gate is of different type and computational complexity, and thus will have a different quantum cost and delay. The computational complexity of a reversible gate can be represented by its quantum cost. Further, delay constitutes an important metric, which has not been addressed in prior works on reversible sequential circuits as a design metric to be optimized. In this work, we present novel designs of reversible sequential circuits that are optimized in terms of quantum cost, delay and the garbage outputs. The optimized designs of several reversible sequential circuits are presented including the D Latch, the JK latch, the T latch and the SR latch, and their corresponding reversible master-slave flip-flop designs. The proposed master-slave flip-flop designs have the special property that they don't require the inversion of the clock for use in the slave latch. Further, we introduce a novel strategy of cascading a Fredkin gate at the outputs of a reversible latch to realize the designs of the Fredkin gate based asynchronous set/reset D latch and the master-slave D flip-flop. Finally, as an example of complex reversible sequential circuits, the reversible logic design of the universal shift register is introduced. The proposed reversible sequential designs were verified through simulations using Verilog HDL and simulation results are presented.

199 citations

Journal ArticleDOI
TL;DR: A novel technique called LECTOR is proposed for designing CMOS gates which significantly cuts down the leakage current without increasing the dynamic power dissipation, resulting in better leakage reduction compared to other techniques.
Abstract: In CMOS circuits, the reduction of the threshold voltage due to voltage scaling leads to increase in subthreshold leakage current and hence static power dissipation. We propose a novel technique called LECTOR for designing CMOS gates which significantly cuts down the leakage current without increasing the dynamic power dissipation. In the proposed technique, we introduce two leakage control transistors (a p-type and a n-type) within the logic gate for which the gate terminal of each leakage control transistor (LCT) is controlled by the source of the other. In this arrangement, one of the LCTs is always "near its cutoff voltage" for any input combination. This increases the resistance of the path from V/sub dd/ to ground, leading to significant decrease in leakage currents. The gate-level netlist of the given circuit is first converted into a static CMOS complex gate implementation and then LCTs are introduced to obtain a leakage-controlled circuit. The significant feature of LECTOR is that it works effectively in both active and idle states of the circuit, resulting in better leakage reduction compared to other techniques. Further, the proposed technique overcomes the limitations posed by other existing methods for leakage reduction. Experimental results indicate an average leakage reduction of 79.4% for MCNC'91 benchmark circuits.

194 citations

Proceedings ArticleDOI
01 Dec 2007
TL;DR: The Composable Lightweight Processors (CLP) as discussed by the authors allows simple, low-power cores to be aggre- gated together dynamically, forming larger, more powerful single-threaded processors without changing the applica- tion binary.
Abstract: Modern chip multiprocessors (CMPs) are designed to exploit both instruction-level parallelism (ILP) within pro- cessors and thread-level parallelism (TLP) within and across processors. However, the number of processors and the granularity of each processor are fixed at de- sign time. This paper evaluates a flexible architectural approach, called Composable Lightweight Processors (or CLPs), that allows simple, low-power cores to be aggre- gated together dynamically, forming larger, more powerful single-threaded processors without changing the applica- tion binary. We evaluate one such design with 32 cores called TFlex, which can be configured as 32 dual-issue pro- cessors, or as a single 64-wide issue processor, or as any point in between. Use of an Explicit Data Graph Execution (EDGE) ISA enables the system to be fully composable, with no monolithic structures spanning the cores. Simulation re- sults show that CLPs achieve an average performance boost of 42%, an average area-efficiency of 3.4x, and an average power-efficiency of 2x over a fixed architecture on a spec- trum of single-threaded applications. Results also show that CLPs outperform a spectrum of fixed CMP architectures on a set of multitasking workloads.

164 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper describes a new approach to low level image processing; in particular, edge and corner detection and structure preserving noise reduction and the resulting methods are accurate, noise resistant and fast.
Abstract: This paper describes a new approach to low level image processing; in particular, edge and corner detection and structure preserving noise reduction. Non-linear filtering is used to define which parts of the image are closely related to each individual pixel; each pixel has associated with it a local image region which is of similar brightness to that pixel. The new feature detectors are based on the minimization of this local image region, and the noise reduction method uses this region as the smoothing neighbourhood. The resulting methods are accurate, noise resistant and fast. Details of the new feature detectors and of the new noise reduction method are described, along with test results.

3,669 citations

Patent
29 Oct 1996
TL;DR: In this paper, the authors proposed a system that automatically constructs a target profile for each target object in the electronic media based on the frequency with which each word appears in an article relative to its overall frequency of use in all articles, as well as a 'target profile interest summary' for each user, which target profile interest summaries describes the user's interest level in various types of target objects.
Abstract: This invention relates to customized electronic identification of desirable objects, such as news articles, in an electronic media environment, and in particular to a system that automatically constructs both a 'target profile' for each target object in the electronic media based, for example, on the frequency with which each word appears in an article relative to its overall frequency of use in all articles, as well as a 'target profile interest summary' for each user, which target profile interest summary describes the user's interest level in various types of target objects. The system then evaluates the target profiles against the users' target profile interest summaries to generate a user-customized rank ordered listing of target objects most likely to be of interest to each user so that the user can select from among these potentially relevant target objects, which were automatically selected by this system from the plethora of target objects that are profiled on the electronic media. Users' target profile interest summaries can be used to efficiently organize the distribution of information in a large scale system consisting of many users interconnected by means of a communication network. Additionally, a cryptographically-based pseudonym proxy server is provided to ensure the privacy of a user's target profile interest summary, by giving the user control over the ability of third parties to access this summary and to identify or contact the user.

1,930 citations

Journal ArticleDOI
TL;DR: A new heuristic for feature detection is presented and, using machine learning, a feature detector is derived from this which can fully process live PAL video using less than 5 percent of the available processing time.
Abstract: The repeatability and efficiency of a corner detector determines how likely it is to be useful in a real-world application. The repeatability is important because the same scene viewed from different positions should yield features which correspond to the same real-world 3D locations. The efficiency is important because this determines whether the detector combined with further processing can operate at frame rate. Three advances are described in this paper. First, we present a new heuristic for feature detection and, using machine learning, we derive a feature detector from this which can fully process live PAL video using less than 5 percent of the available processing time. By comparison, most other detectors cannot even operate at frame rate (Harris detector 115 percent, SIFT 195 percent). Second, we generalize the detector, allowing it to be optimized for repeatability, with little loss of efficiency. Third, we carry out a rigorous comparison of corner detectors based on the above repeatability criterion applied to 3D scenes. We show that, despite being principally constructed for speed, on these stringent tests, our heuristic detector significantly outperforms existing feature detectors. Finally, the comparison demonstrates that using machine learning produces significant improvements in repeatability, yielding a detector that is both very fast and of very high quality.

1,847 citations

Patent
27 Oct 2000
TL;DR: A secure data interchange system enables information about bilateral and multilateral interactions between multiple persistent parties to be exchanged and leveraged within an environment that uses a combination of techniques to control access to information, release of information, and matching of information back to parties as mentioned in this paper.
Abstract: A secure data interchange system enables information about bilateral and multilateral interactions between multiple persistent parties to be exchanged and leveraged within an environment that uses a combination of techniques to control access to information, release of information, and matching of information back to parties. Access to data records can be controlled using an associated price rule. A data owner can specify a price for different types and amounts of information access.

1,834 citations

Journal ArticleDOI
TL;DR: The hardware aspects of reconfigurable computing machines, from single chip architectures to multi-chip systems, including internal structures and external coupling are explored, and the software that targets these machines is focused on.
Abstract: Due to its potential to greatly accelerate a wide variety of applications, reconfigurable computing has become a subject of a great deal of research. Its key feature is the ability to perform computations in hardware to increase performance, while retaining much of the flexibility of a software solution. In this survey, we explore the hardware aspects of reconfigurable computing machines, from single chip architectures to multi-chip systems, including internal structures and external coupling. We also focus on the software that targets these machines, such as compilation tools that map high-level algorithms directly to the reconfigurable substrate. Finally, we consider the issues involved in run-time reconfigurable systems, which reuse the configurable hardware during program execution.

1,666 citations