scispace - formally typeset
Search or ask a question
Author

Nai-Bo Zhang

Bio: Nai-Bo Zhang is an academic researcher from Shandong University. The author has contributed to research in topics: Neutron star & Nuclear matter. The author has an hindex of 16, co-authored 38 publications receiving 1053 citations. Previous affiliations of Nai-Bo Zhang include Beijing Normal University & Texas A&M University–Commerce.

Papers
More filters
Journal ArticleDOI
TL;DR: Within the parameter space of dense neutron-rich matter limited by existing constraints mainly from terrestrial nuclear experiments, this paper investigated how the neutron star maximum mass $M{max}}>2.01\pm0.04$ M$_\odot, radius $10.83$ km and tidal deformability $\Lambda_{1.4}=800$ from the recent observation of GW170817 is found to provide upper limits on some EOS parameters consistent with but far less restrictive than the existing constraints of other observables studied.
Abstract: Within the parameter space of equation of state (EOS) of dense neutron-rich matter limited by existing constraints mainly from terrestrial nuclear experiments, we investigate how the neutron star maximum mass $M_{\rm{max}}>2.01\pm0.04$ M$_\odot$, radius $10.62

109 citations

Journal ArticleDOI
TL;DR: In this paper, a supramassive, strongly magnetized millisecond neutron star (NS) has been proposed to be the candidate central engine of at least some short gamma-ray bursts (SGRBs), based on the ''internal plateau'' commonly observed in the early x-ray afterglow.
Abstract: A supramassive, strongly magnetized millisecond neutron star (NS) has been proposed to be the candidate central engine of at least some short gamma-ray bursts (SGRBs), based on the ``internal plateau'' commonly observed in the early x-ray afterglow. While a previous analysis shows a qualitative consistency between this suggestion and the Swift SGRB data, the distribution of observed break time ${t}_{b}$ is much narrower than the distribution of the collapse time of supramassive NSs for the several NS equations-of-state (EoSs) investigated. In this paper, we study four recently constructed ``unified'' NS EoSs (BCPM, BSk20, BSk21, and Shen) as well as three developed strange quark star (QS) EoSs within the new confinement density-dependent mass (CDDM) model, labelled as CIDDM, CDDM1, and CDDM2. All the EoSs chosen here satisfy the recent observational constraints of the two massive pulsars of which the masses are precisely measured. We construct sequences of rigidly rotating NS/QS configurations with increasing spinning frequency $f$, from nonrotating ($f=0$) to the Keplerian frequency ($f={f}_{\mathrm{K}}$), and provide convenient analytical parametrizations of the results. Assuming that the cosmological NS-NS merger systems have the same mass distribution as the Galactic NS-NS systems, we demonstrate that all except the BCPM NS EoS can reproduce the current 22% supramassive NS/QS fraction constraint as derived from the SGRB data. We simultaneously simulate the observed quantities (the break time ${t}_{b}$, the break time luminosity ${L}_{b}$, and the total energy in the electromagnetic channel ${E}_{\text{total}}$) of SGRBs and find that, while equally well reproducing other observational constraints, QS EoSs predict a much narrower ${t}_{b}$ distribution than that of the NS EoSs, better matching the data. We therefore suggest that the postmerger product of NS-NS mergers might be fast-rotating supramassive QSs rather than NSs.

104 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress in predicting the nuclear symmetry energy and identify new challenges to the best knowledge we have on several selected topics critical for understanding astrophysical effects of the nuclear symmetric energy.
Abstract: Determining the Equation of State (EOS) of dense neutron-rich nuclear matter is a shared goal of both nuclear physics and astrophysics. Except possible phase transitions, the density dependence of nuclear symmetry $ E_{{\rm sym}}(\rho)$ is the most uncertain part of the EOS of neutron-rich nucleonic matter especially at supra-saturation densities. Much progresses have been made in recent years in predicting the symmetry energy and understanding why it is still very uncertain using various microscopic nuclear many-body theories and phenomenological models. Simultaneously, significant progresses have also been made in probing the symmetry energy in both terrestrial nuclear laboratories and astrophysical observatories. In light of the GW170817 event as well as ongoing or planned nuclear experiments and astrophysical observations probing the EOS of dense neutron-rich matter, we review recent progresses and identify new challenges to the best knowledge we have on several selected topics critical for understanding astrophysical effects of the nuclear symmetry energy.

97 citations

Journal ArticleDOI
TL;DR: In this paper, a restricted EOS parameter space is established using observational constraints on the radius, maximum mass, tidal deformability and causality condition of neutron stars (NSs), which is consistent with findings of several recent analyses and numerical general relativity simulations about the maximum mass of the possible super-massive remanent produced in the immediate aftermath of GW170817.
Abstract: By numerically inverting the Tolman-Oppenheimer-Volkov (TOV) equation using an explicitly isospin-dependent parametric Equation of State (EOS) of dense neutron-rich nucleonic matter, a restricted EOS parameter space is established using observational constraints on the radius, maximum mass, tidal deformability and causality condition of neutron stars (NSs). The constraining band obtained for the pressure as a function of energy (baryon) density is in good agreement with that extracted recently by the LIGO+Virgo Collaborations from their improved analyses of the NS tidal deformability in GW170817. Rather robust upper and lower boundaries on nuclear symmetry energies are extracted from the observational constraints up to about twice the saturation density $\rho_{0}$ of nuclear matter. More quantitatively, the symmetry energy at $2\rho_{0}$ is constrained to $ E_{\mathrm{sym}}(2\rho_{0})= 46.9\pm 10.1$ MeV excluding many existing theoretical predictions scattered between $ E_{\mathrm{sym}}(2\rho_{0}) =15$ and 100 MeV. Moreover, by studying variations of the causality surface where the speed of sound equals that of light at central densities of the most massive neutron stars within the restricted EOS parameter space, the absolutely maximum mass of neutron stars is found to be 2.40 $ \mathrm{M}_{\odot}$ approximately independent of the EOSs used. This limiting mass is consistent with findings of several recent analyses and numerical general relativity simulations about the maximum mass of the possible super-massive remanent produced in the immediate aftermath of GW170817. deformability

85 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Jan 2017
TL;DR: AGILE as discussed by the authors is an ASI space mission developed with programmatic support by INAF and INFN, which includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Abstract: This program was supported by the the Kavli Foundation, Danish National Research Foundation, the Niels Bohr International Academy, and the DARK Cosmology Centre. The UCSC group is supported in part by NSF grant AST-1518052, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, generous donations from many individuals through a UCSC Giving Day grant, and from fellowships from the Alfred P. Sloan Foundation (R.J.F.), the David and Lucile Packard Foundation (R.J.F. and E.R.) and the Niels Bohr Professorship from the DNRF (E.R.). AMB acknowledges support from a UCMEXUS-CONACYT Doctoral Fellowship. Support for this work was provided by NASA through Hubble Fellowship grants HST-HF-51348.001 (B.J.S.) and HST-HF-51373.001 (M.R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This paper includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.r (AGILE) The AGILE Team thanks the ASI management, the technical staff at the ASI Malindi ground station, the technical support team at the ASI Space Science Data Center, and the Fucino AGILE Mission Operation Center. AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant No. I/028/12/2. We also thank INAF, Italian Institute of Astrophysics, and ASI, Italian Space Agency.r (ANTARES) The ANTARES Collaboration acknowledges the financial support of: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cite d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania;...

1,270 citations

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1428 moreInstitutions (155)
TL;DR: In this article, the population of 47 compact binary mergers detected with a false-alarm rate of 0.614 were dynamically assembled, and the authors found that the BBH rate likely increases with redshift, but not faster than the star formation rate.
Abstract: We report on the population of 47 compact binary mergers detected with a false-alarm rate of 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

468 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported a radius measurement based on fits of rotating hot spot patterns to Neutron Star Interior Composition Explorer (NICER) and X-ray Multi-Mirror (XMM-Newton) observations.
Abstract: PSR J0740$+$6620 has a gravitational mass of $2.08\pm 0.07~M_\odot$, which is the highest reliably determined mass of any neutron star. As a result, a measurement of its radius will provide unique insight into the properties of neutron star core matter at high densities. Here we report a radius measurement based on fits of rotating hot spot patterns to Neutron Star Interior Composition Explorer (NICER) and X-ray Multi-Mirror (XMM-Newton) X-ray observations. We find that the equatorial circumferential radius of PSR J0740$+$6620 is $13.7^{+2.6}_{-1.5}$ km (68%). We apply our measurement, combined with the previous NICER mass and radius measurement of PSR J0030$+$0451, the masses of two other $\sim 2~M_\odot$ pulsars, and the tidal deformability constraints from two gravitational wave events, to three different frameworks for equation of state modeling, and find consistent results at $\sim 1.5-3$ times nuclear saturation density. For a given framework, when all measurements are included the radius of a $1.4~M_\odot$ neutron star is known to $\pm 4$% (68% credibility) and the radius of a $2.08~M_\odot$ neutron star is known to $\pm 5$%. The full radius range that spans the $\pm 1\sigma$ credible intervals of all the radius estimates in the three frameworks is $12.45\pm 0.65$ km for a $1.4~M_\odot$ neutron star and $12.35\pm 0.75$ km for a $2.08~M_\odot$ neutron star.

365 citations

Journal ArticleDOI
TL;DR: In this article, the authors estimate the radius, mass, and hot surface regions of the massive millisecond pulsar PSR J0740$+$6620, conditional on pulse profile modeling of Neutron Star Interior Composition Explorer X-ray Timing Instrument (NICER XTI) event data.
Abstract: We report on Bayesian estimation of the radius, mass, and hot surface regions of the massive millisecond pulsar PSR J0740$+$6620, conditional on pulse-profile modeling of Neutron Star Interior Composition Explorer X-ray Timing Instrument (NICER XTI) event data. We condition on informative pulsar mass, distance, and orbital inclination priors derived from the joint NANOGrav and CHIME/Pulsar wideband radio timing measurements of arXiv:2104.00880. We use XMM European Photon Imaging Camera spectroscopic event data to inform our X-ray likelihood function. The prior support of the pulsar radius is truncated at 16 km to ensure coverage of current dense matter models. We assume conservative priors on instrument calibration uncertainty. We constrain the equatorial radius and mass of PSR J0740$+$6620 to be $12.39_{-0.98}^{+1.30}$ km and $2.072_{-0.066}^{+0.067}$ M$_{\odot}$ respectively, each reported as the posterior credible interval bounded by the 16% and 84% quantiles, conditional on surface hot regions that are non-overlapping spherical caps of fully-ionized hydrogen atmosphere with uniform effective temperature; a posteriori, the temperature is $\log_{10}(T$ [K]$)=5.99_{-0.06}^{+0.05}$ for each hot region. All software for the X-ray modeling framework is open-source and all data, model, and sample information is publicly available, including analysis notebooks and model modules in the Python language. Our marginal likelihood function of mass and equatorial radius is proportional to the marginal joint posterior density of those parameters (within the prior support) and can thus be computed from the posterior samples.

353 citations