scispace - formally typeset
Search or ask a question
Author

Nai-Le Liu

Bio: Nai-Le Liu is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Quantum entanglement & Quantum network. The author has an hindex of 34, co-authored 117 publications receiving 7379 citations. Previous affiliations of Nai-Le Liu include Chinese Academy of Sciences & Center for Excellence in Education.


Papers
More filters
Journal ArticleDOI
09 Aug 2017-Nature
TL;DR: This work reports the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD—a form ofQKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected.
Abstract: Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.

1,216 citations

Journal ArticleDOI
18 Dec 2020-Science
TL;DR: In this paper, the authors proposed to use quantum computers to perform certain tasks that are believed to be intractable to classical computers, such as Boson sampling, which is considered a strong candidate to demonstrate the capabilities of quantum computers.
Abstract: Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the ...

1,086 citations

Journal ArticleDOI
16 Jun 2017-Science
TL;DR: Satellite-based distribution of entangled photon pairs to two locations separated by 1203 kilometers on Earth, through two satellite-to-ground downlinks is demonstrated, with a survival of two-photon entanglement and a violation of Bell inequality.
Abstract: Long-distance entanglement distribution is essential for both foundational tests of quantum physics and scalable quantum networks. Owing to channel loss, however, the previously achieved distance was limited to ~100 kilometers. Here we demonstrate satellite-based distribution of entangled photon pairs to two locations separated by 1203 kilometers on Earth, through two satellite-to-ground downlinks with a summed length varying from 1600 to 2400 kilometers. We observed a survival of two-photon entanglement and a violation of Bell inequality by 2.37 ± 0.09 under strict Einstein locality conditions. The obtained effective link efficiency is orders of magnitude higher than that of the direct bidirectional transmission of the two photons through telecommunication fibers.

917 citations

Journal ArticleDOI
TL;DR: Gaussian boson sampling was performed by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix and sampling the output using 100 high-efficiency single-photon detectors, and the obtained samples were validated against plausible hypotheses exploiting thermal states, distinguishable photons, and uniform distribution.
Abstract: Gaussian boson sampling exploits squeezed states to provide a highly efficient way to demonstrate quantum computational advantage. We perform experiments with 50 input single-mode squeezed states with high indistinguishability and squeezing parameters, which are fed into a 100-mode ultralow-loss interferometer with full connectivity and random transformation, and sampled using 100 high-efficiency single-photon detectors. The whole optical set-up is phase-locked to maintain a high coherence between the superposition of all photon number states. We observe up to 76 output photon-clicks, which yield an output state space dimension of $10^{30}$ and a sampling rate that is $10^{14}$ faster than using the state-of-the-art simulation strategy and supercomputers. The obtained samples are validated against various hypotheses including using thermal states, distinguishable photons, and uniform distribution.

681 citations

Journal ArticleDOI
07 Sep 2017-Nature
TL;DR: The demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.
Abstract: Quantum teleportation of single-photon qubits from a ground observatory to a satellite in low-Earth orbit via an uplink channel is achieved with a fidelity that is well above the classical limit. The laws of quantum physics give rise to protocols for ultra-secure cryptography and quantum communications. However, to be useful in a global network, these protocols will have to function with satellites. Extending existing protocols to such long distances poses a tremendous experimental challenge. Researchers led by Jian-Wei Pan present a pair of papers in this issue that take steps toward a global quantum network, using the low-Earth-orbit satellite Micius. They demonstrate satellite-to-ground quantum key distribution, an integral part of quantum cryptosystems, at kilohertz rates over 1,200 kilometres, and report quantum teleportation of a single-photon qubit over 1,400 kilometres. Quantum teleportation is the transfer of the exact state of a quantum object from one place to another, without physical travelling of the object itself, and is a central process in many quantum communication protocols. These two experiments suggest that Micius could become the first component in a global quantum internet. An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly1. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances2, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks3,4 and distributed quantum computation5,6. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels7,8,9,10,11,12, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’13 the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit)14. Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

638 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
13 Sep 2017-Nature
TL;DR: The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers.
Abstract: Recent progress implies that a crossover between machine learning and quantum information processing benefits both fields. Traditional machine learning has dramatically improved the benchmarking an ...

2,162 citations