scispace - formally typeset
Search or ask a question
Author

Nai Phuan Ong

Bio: Nai Phuan Ong is an academic researcher from Princeton University. The author has contributed to research in topics: Topological insulator & Hall effect. The author has an hindex of 64, co-authored 202 publications receiving 22533 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of experimental and theoretical studies of anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity.
Abstract: We present a review of experimental and theoretical studies of the anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical work, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents which originate from spin-orbit coupling. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors, have more clearly established systematic trends. These two developments in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of Berry-phase curvatures and it is therefore an intrinsic quantum mechanical property of a perfect cyrstal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. We review the full modern semiclassical treatment of the AHE together with the more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Finally we discuss outstanding issues and avenues for future investigation.

2,970 citations

Journal ArticleDOI
27 Aug 2009-Nature
TL;DR: The results reveal a spin-momentum locked Dirac cone carrying a non-trivial Berry’s phase that is nearly 100 per cent spin-polarized, which exhibits a tunable topological fermion density in the vicinity of the Kramers point and can be driven to the long-sought topological spin transport regime.
Abstract: Helical Dirac fermions—charge carriers that behave as massless relativistic particles with an intrinsic angular momentum (spin) locked to its translational momentum—are proposed to be the key to realizing fundamentally new phenomena in condensed matter physics. Prominent examples include the anomalous quantization of magneto-electric coupling, half-fermion states that are their own antiparticle, and charge fractionalization in a Bose– Einstein condensate, all of which are not possible with conventional Dirac fermions of the graphene variety. Helical Dirac fermions have so far remained elusive owing to the lack of necessary spin-sensitive measurements and because such fermions are forbidden to exist in conventional materials harbouring relativistic electrons, such as graphene or bismuth. It has recently been proposed that helical Dirac fermions may exist at the edges of certain types of topologically ordered insulators—materials with a bulk insulating gap of spin–orbit origin and surface states protected against scattering by time-reversal symmetry—and that their peculiar properties may be accessed provided the insulator is tuned into the so-called topological transport regime. However, helical Dirac fermions have not been observed in existing topological insulators. Here we report the realization and characterization of a tunable topological insulator in a bismuthbased class of material by combining spin-imaging and momentum-resolved spectroscopies, bulk charge compensation, Hall transport measurements and surface quantum control. Our results reveal a spin-momentum locked Dirac cone carrying a nontrivial Berry’s phase that is nearly 100 per cent spin-polarized, which exhibits a tunable topological fermion density in the vicinity of the Kramers point and can be driven to the long-sought topological spin transport regime. The observed topological nodal state is shown to be protected even up to 300 K. Our demonstration of room-temperature topological order and non-trivial spintexture in stoichiometric Bi_2Se_3.M_x (M_x indicates surface doping or gating control) paves the way for future graphene-like studies of topological insulators, and applications of the observed spinpolarized edge channels in spintronic and computing technologies possibly at room temperature.

1,685 citations

Journal ArticleDOI
TL;DR: In this paper, the magnetoresistance and the field dependent magnetization have been systematically examined in the low temperature ferromagnetic metallic state of single crystal and polycrystalline.
Abstract: The magnetoresistance (MR) and the field dependent magnetization have been systematically examined in the low temperature ferromagnetic metallic state of single crystal and polycrystalline ${\mathrm{La}}_{2/3}{\mathrm{Sr}}_{1/3}{\mathrm{MnO}}_{3}$. We find that the intrinsic negative MR in single crystal is due to the suppression of spin fluctuations, and magnetic domain boundaries do not dominate the scattering process. In contrast, we demonstrate that the MR in the polycrystalline samples exhibits two distinct regions: large MR at low fields dominated by spin-polarized tunneling between grains and high field MR which is remarkably temperature independent from 5 to 280 K.

1,594 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported a remarkable transport property of Cd3As2 that strongly suppresses backscattering in zero magnetic field in single crystals, which results in ultra-high mobility, 9 × 10(6) cm(2) V(-1) s(-1)-1) at 5 K and a transport lifetime 10 times longer than the quantum lifetime.
Abstract: Dirac and Weyl semimetals are 3D analogues of graphene in which crystalline symmetry protects the nodes against gap formation Na3Bi and Cd3As2 were predicted to be Dirac semimetals, and recently confirmed to be so by photoemission experiments Several novel transport properties in a magnetic field have been proposed for Dirac semimetals Here, we report a property of Cd3As2 that was unpredicted, namely a remarkable protection mechanism that strongly suppresses backscattering in zero magnetic field In single crystals, the protection results in ultrahigh mobility, 9 × 10(6) cm(2) V(-1) s(-1) at 5 K Suppression of backscattering results in a transport lifetime 10(4) times longer than the quantum lifetime The lifting of this protection by the applied magnetic field leads to a very large magnetoresistance We discuss how this may relate to changes to the Fermi surface induced by the applied magnetic field

1,192 citations

Journal ArticleDOI
23 Oct 2015-Science
TL;DR: Transport measurements lead to the detection of the predicted large negative magnetoresistance, which appeared only when the two fields were nearly parallel to each other, and it is shown that rotating E is consistent with the prediction of the chiral anomaly.
Abstract: In a Dirac semimetal, each Dirac node is resolved into two Weyl nodes with opposite "handedness" or chirality. The two chiral populations do not mix. However, in parallel electric and magnetic fields ( E: || B: ), charge is predicted to flow between the Weyl nodes, leading to negative magnetoresistance. This "axial" current is the chiral (Adler-Bell-Jackiw) anomaly investigated in quantum field theory. We report the observation of a large, negative longitudinal magnetoresistance in the Dirac semimetal Na3Bi. The negative magnetoresistance is acutely sensitive to deviations of the direction of B: from E: and is incompatible with conventional transport. By rotating E: (as well as B: ), we show that it is consistent with the prediction of the chiral anomaly.

986 citations


Cited by
More filters
Journal ArticleDOI
19 Jun 2009-Science
TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Abstract: Graphene is a wonder material with many superlatives to its name. It is the thinnest known material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have zero effective mass, and can travel for micrometers without scattering at room temperature. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a benchtop experiment. This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.

12,117 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
TL;DR: A new era of complex thermoelectric materials is approaching because of modern synthesis and characterization techniques, particularly for nanoscale materials, and the strategies used to improve the thermopower and reduce the thermal conductivity are reviewed.
Abstract: Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.

8,999 citations

Journal ArticleDOI
TL;DR: The thermal properties of carbon materials are reviewed, focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder, with special attention given to the unusual size dependence of heat conduction in two-dimensional crystals.
Abstract: Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range--of over five orders of magnitude--from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.

5,189 citations