scispace - formally typeset
Search or ask a question
Author

Naijia Xiao

Bio: Naijia Xiao is an academic researcher from University of Oklahoma. The author has contributed to research in topics: Interval (mathematics) & Interval finite element. The author has an hindex of 6, co-authored 16 publications receiving 353 citations. Previous affiliations of Naijia Xiao include Tsinghua University & Georgia Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: Global sampling of microbial communities associated with wastewater treatment plants and application of ecological theory revealed a small, core bacterial community associated with performance and provides insights into the community dynamics in this environment.
Abstract: Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes.

423 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the effects of long-term experimental warming on the complexity and stability of molecular ecological networks in grassland soil microbial communities, and found that warming significantly increased network complexity, including network size, connectivity, connectance, average clustering coefficient, relative modularity and number of keystone species.
Abstract: Unravelling the relationships between network complexity and stability under changing climate is a challenging topic in theoretical ecology that remains understudied in the field of microbial ecology. Here, we examined the effects of long-term experimental warming on the complexity and stability of molecular ecological networks in grassland soil microbial communities. Warming significantly increased network complexity, including network size, connectivity, connectance, average clustering coefficient, relative modularity and number of keystone species, as compared with the ambient control. Molecular ecological networks under warming became significantly more robust, with network stability strongly correlated with network complexity, supporting the central ecological belief that complexity begets stability. Furthermore, warming significantly strengthened the relationships of network structure to community functional potentials and key ecosystem functioning. These results indicate that preserving microbial ‘interactions’ is critical for ecosystem management and for projecting ecological consequences of future climate warming. The authors examine the effect of long-term experimental warming on the complexity and stability of molecular ecological networks in grassland soil microbial communities. They find warming increases network complexity, which is strongly correlated with network stability.

393 citations

Journal ArticleDOI
18 Jun 2019
TL;DR: This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions and application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants had significant impacts on the biodiversity of the communities.
Abstract: While functional gene arrays (FGAs) have greatly expanded our understanding of complex microbial systems, specificity, sensitivity, and quantitation challenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agilent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others providing ecological services, and a larger format (GeoChip 5.0M) containing the functional categories involved in biogeochemical cycling of C, N, S, and P and various metals, stress response, microbial defense, electron transport, plant growth promotion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M contains 161,961 oligonucleotide probes covering >365,000 genes of 1,447 gene families from broad, functionally divergent taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and viruses (167 genera), mainly phages. Computational and experimental evaluation indicated that designed probes were highly specific and could detect as little as 0.05 ng of pure culture DNAs within a background of 1 μg community DNA (equivalent to 0.005% of the population). Additionally, strong quantitative linear relationships were observed between signal intensity and amount of pure genomic (∼99% of probes detected; r > 0.9) or soil (∼97%; r > 0.9) DNAs. Application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants (primarily heavy metals) had significant impacts on the biodiversity of the communities. This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions.IMPORTANCE The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities.

50 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a total Lagrangian quadrature element formulation for planar frames undergoing large displacements and rotations, based on the geometrically exact beam theory, first proposed by Reissner and later extended by Simo and Vu-Quoc.
Abstract: This paper presents a total Lagrangian quadrature element formulation for planar frames undergoing large displacements and rotations. The geometrically exact beam theory, first proposed by Reissner and later extended by Simo and Vu-Quoc, is used as the basis for the formulation. Quadrature element analysis starts with evaluation of the integrals involved in the weak form description of the problem. Neither the placement of nodes nor the number of nodes in a quadrature element is fixed, being adjustable according to convergence need. As a result, not only a member can be modeled with one quadrature element but the total number of degrees of freedom is minimized as well. Several examples of planar frames are given and comparison with analytical and finite element results is made to illustrate the high computational efficiency and accuracy of the weak form quadrature element method (QEM).

43 citations

Journal ArticleDOI
TL;DR: This article examined the effects of warming, altered precipitation and annual biomass removal on grassland soil bacterial, fungal and protistan communities over 7 years to determine how these representative climate changes impact microbial biodiversity and ecosystem functioning.
Abstract: Anthropogenic climate change threatens ecosystem functioning. Soil biodiversity is essential for maintaining the health of terrestrial systems, but how climate change affects the richness and abundance of soil microbial communities remains unresolved. We examined the effects of warming, altered precipitation and annual biomass removal on grassland soil bacterial, fungal and protistan communities over 7 years to determine how these representative climate changes impact microbial biodiversity and ecosystem functioning. We show that experimental warming and the concomitant reductions in soil moisture play a predominant role in shaping microbial biodiversity by decreasing the richness of bacteria (9.6%), fungi (14.5%) and protists (7.5%). Our results also show positive associations between microbial biodiversity and ecosystem functional processes, such as gross primary productivity and microbial biomass. We conclude that the detrimental effects of biodiversity loss might be more severe in a warmer world.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A definition of microbiome is proposed based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings.
Abstract: The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term “microbiome.” Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role.

733 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the effects of long-term experimental warming on the complexity and stability of molecular ecological networks in grassland soil microbial communities, and found that warming significantly increased network complexity, including network size, connectivity, connectance, average clustering coefficient, relative modularity and number of keystone species.
Abstract: Unravelling the relationships between network complexity and stability under changing climate is a challenging topic in theoretical ecology that remains understudied in the field of microbial ecology. Here, we examined the effects of long-term experimental warming on the complexity and stability of molecular ecological networks in grassland soil microbial communities. Warming significantly increased network complexity, including network size, connectivity, connectance, average clustering coefficient, relative modularity and number of keystone species, as compared with the ambient control. Molecular ecological networks under warming became significantly more robust, with network stability strongly correlated with network complexity, supporting the central ecological belief that complexity begets stability. Furthermore, warming significantly strengthened the relationships of network structure to community functional potentials and key ecosystem functioning. These results indicate that preserving microbial ‘interactions’ is critical for ecosystem management and for projecting ecological consequences of future climate warming. The authors examine the effect of long-term experimental warming on the complexity and stability of molecular ecological networks in grassland soil microbial communities. They find warming increases network complexity, which is strongly correlated with network stability.

393 citations

Journal ArticleDOI
TL;DR: An updated approach to data analysis has been unveiled (version 5.0), replacing the previous single pipeline with multiple analysis pipelines that are tailored according to the input data, and that are formally described using the Common Workflow Language, enabling greater provenance, reusability, and reproducibility.
Abstract: MGnify (http://www.ebi.ac.uk/metagenomics) provides a free to use platform for the assembly, analysis and archiving of microbiome data derived from sequencing microbial populations that are present in particular environments. Over the past 2 years, MGnify (formerly EBI Metagenomics) has more than doubled the number of publicly available analysed datasets held within the resource. Recently, an updated approach to data analysis has been unveiled (version 5.0), replacing the previous single pipeline with multiple analysis pipelines that are tailored according to the input data, and that are formally described using the Common Workflow Language, enabling greater provenance, reusability, and reproducibility. MGnify's new analysis pipelines offer additional approaches for taxonomic assertions based on ribosomal internal transcribed spacer regions (ITS1/2) and expanded protein functional annotations. Biochemical pathways and systems predictions have also been added for assembled contigs. MGnify's growing focus on the assembly of metagenomic data has also seen the number of datasets it has assembled and analysed increase six-fold. The non-redundant protein database constructed from the proteins encoded by these assemblies now exceeds 1 billion sequences. Meanwhile, a newly developed contig viewer provides fine-grained visualisation of the assembled contigs and their enriched annotations.

339 citations

Journal ArticleDOI
TL;DR: Application of iCAMP to grassland microbial communities in response to experimental warming reveals dominant roles of homogeneous selection and ‘drift’, and interestingly, warming decreases ‘ Drift’ over time, and enhances homogeneity selection which is primarily imposed on Bacillales.
Abstract: Unraveling the drivers controlling community assembly is a central issue in ecology. Although it is generally accepted that selection, dispersal, diversification and drift are major community assembly processes, defining their relative importance is very challenging. Here, we present a framework to quantitatively infer community assembly mechanisms by phylogenetic bin-based null model analysis (iCAMP). iCAMP shows high accuracy (0.93-0.99), precision (0.80-0.94), sensitivity (0.82-0.94), and specificity (0.95-0.98) on simulated communities, which are 10-160% higher than those from the entire community-based approach. Application of iCAMP to grassland microbial communities in response to experimental warming reveals dominant roles of homogeneous selection (38%) and 'drift' (59%). Interestingly, warming decreases 'drift' over time, and enhances homogeneous selection which is primarily imposed on Bacillales. In addition, homogeneous selection has higher correlations with drought and plant productivity under warming than control. iCAMP provides an effective and robust tool to quantify microbial assembly processes, and should also be useful for plant and animal ecology.

271 citations