scispace - formally typeset
Search or ask a question
Author

Nalini K. Ratha

Bio: Nalini K. Ratha is an academic researcher from IBM. The author has contributed to research in topics: Biometrics & Fingerprint recognition. The author has an hindex of 50, co-authored 216 publications receiving 12290 citations. Previous affiliations of Nalini K. Ratha include Michigan State University & University at Buffalo.


Papers
More filters
Journal ArticleDOI
TL;DR: The inherent strengths of biometrics-based authentication are outlined, the weak links in systems employing biometric authentication are identified, and new solutions for eliminating these weak links are presented.
Abstract: Because biometrics-based authentication offers several advantages over other authentication methods, there has been a significant surge in the use of biometrics for user authentication in recent years. It is important that such biometrics-based authentication systems be designed to withstand attacks when employed in security-critical applications, especially in unattended remote applications such as e-commerce. In this paper we outline the inherent strengths of biometrics-based authentication, identify the weak links in systems employing biometrics-based authentication, and present new solutions for eliminating some of these weak links. Although, for illustration purposes, fingerprint authentication is used throughout, our analysis extends to other biometrics-based methods.

1,709 citations

Journal ArticleDOI
TL;DR: This paper demonstrates several methods to generate multiple cancelable identifiers from fingerprint images to overcome privacy concerns and concludes that feature-level cancelable biometric construction is practicable in large biometric deployments.
Abstract: Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key". The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments

884 citations

Journal ArticleDOI
TL;DR: The approach integrates a number of domain-specific high-level features such as pattern class and ridge density at higher levels of the search and incorporates elastic structural feature-based matching for indexing the database at the lowest level.
Abstract: With the current rapid growth in multimedia technology, there is an imminent need for efficient techniques to search and query large image databases. Because of their unique and peculiar needs, image databases cannot be treated in a similar fashion to other types of digital libraries. The contextual dependencies present in images, and the complex nature of two-dimensional image data make the representation issues more difficult for image databases. An invariant representation of an image is still an open research issue. For these reasons, it is difficult to find a universal content-based retrieval technique. Current approaches based on shape, texture, and color for indexing image databases have met with limited success. Further, these techniques have not been adequately tested in the presence of noise and distortions. A given application domain offers stronger constraints for improving the retrieval performance. Fingerprint databases are characterized by their large size as well as noisy and distorted query images. Distortions are very common in fingerprint images due to elasticity of the skin. In this paper, a method of indexing large fingerprint image databases is presented. The approach integrates a number of domain-specific high-level features such as pattern class and ridge density at higher levels of the search. At the lowest level, it incorporates elastic structural feature-based matching for indexing the database. With a multilevel indexing approach, we have been able to reduce the search space. The search engine has also been implemented on Splash 2-a field programmable gate array (FPGA)-based array processor to obtain near-ASIC level speed of matching. Our approach has been tested on a locally collected test data and on NIST-9, a large fingerprint database available in the public domain.

725 citations

Book
06 Nov 2003
TL;DR: This complete, technical guide details the principles, methods, technologies, and core ideas used in biometric authentication systems and defines and explains how to measure the performance of both verification and identification systems.
Abstract: This complete, technical guide details the principles, methods, technologies, and core ideas used in biometric authentication systems. It explains the definition and measurement of performance and examines the factors involved in choosing between different biometrics. It also delves into practical applications and covers a number of topics critical for successful system integration. These include recognition accuracy, total cost of ownership, acquisition and processing speed, intrinsic and system security, privacy and legal requirements, and user acceptance. The "Guide to Biometrics:" * Debunks myths and candidly confronts problems associated with biometrics research * Details relevant issues in choosing between biometrics, as well as defining and measuring performance * Defines and explains how to measure the performance of both verification and identification systems * Addresses challenges in managing tradeoffs between security and convenience Security and financial administrators, computer science professionals, and biometric systems developers will all benefit from an enhanced understanding of this important technology.

658 citations

Journal ArticleDOI
TL;DR: A reliable method for extracting structural features from fingerprint images is presented and a “goodness index” (GI) which compares the results of automatic extraction with manually extracted ground truth is evaluated.

635 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Book
10 Mar 2005
TL;DR: This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators.
Abstract: A major new professional reference work on fingerprint security systems and technology from leading international researchers in the field Handbook provides authoritative and comprehensive coverage of all major topics, concepts, and methods for fingerprint security systems This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators

3,821 citations

Journal ArticleDOI
TL;DR: A fast fingerprint enhancement algorithm is presented, which can adaptively improve the clarity of ridge and valley structures of input fingerprint images based on the estimated local ridge orientation and frequency.
Abstract: In order to ensure that the performance of an automatic fingerprint identification/verification system will be robust with respect to the quality of input fingerprint images, it is essential to incorporate a fingerprint enhancement algorithm in the minutiae extraction module. We present a fast fingerprint enhancement algorithm, which can adaptively improve the clarity of ridge and valley structures of input fingerprint images based on the estimated local ridge orientation and frequency. We have evaluated the performance of the image enhancement algorithm using the goodness index of the extracted minutiae and the accuracy of an online fingerprint verification system. Experimental results show that incorporating the enhancement algorithm improves both the goodness index and the verification accuracy.

2,212 citations

01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations

Reference EntryDOI
15 Oct 2004

2,118 citations