scispace - formally typeset
Search or ask a question
Author

Nalini K. Ratha

Bio: Nalini K. Ratha is an academic researcher from IBM. The author has contributed to research in topics: Biometrics & Fingerprint recognition. The author has an hindex of 50, co-authored 216 publications receiving 12290 citations. Previous affiliations of Nalini K. Ratha include Michigan State University & University at Buffalo.


Papers
More filters
Journal ArticleDOI
01 Oct 2007
TL;DR: The fourteen papers in this special section are devoted to recent advancements in biometric systems and application devices.
Abstract: The fourteen papers in this special section are devoted to recent advancements in biometric systems and application devices.

40 citations

Posted Content
TL;DR: Evidence is brought forth suggesting that differences in lip, eye and cheek structure across ethnicity lead to the differences in commercial face classification services, and lip and eye makeup are seen as strong predictors for a female face, which is a troubling propagation of a gender stereotype.
Abstract: Recent work shows unequal performance of commercial face classification services in the gender classification task across intersectional groups defined by skin type and gender. Accuracy on dark-skinned females is significantly worse than on any other group. In this paper, we conduct several analyses to try to uncover the reason for this gap. The main finding, perhaps surprisingly, is that skin type is not the driver. This conclusion is reached via stability experiments that vary an image's skin type via color-theoretic methods, namely luminance mode-shift and optimal transport. A second suspect, hair length, is also shown not to be the driver via experiments on face images cropped to exclude the hair. Finally, using contrastive post-hoc explanation techniques for neural networks, we bring forth evidence suggesting that differences in lip, eye and cheek structure across ethnicity lead to the differences. Further, lip and eye makeup are seen as strong predictors for a female face, which is a troubling propagation of a gender stereotype.

38 citations

Proceedings ArticleDOI
TL;DR: A very high accuracy multi-modal authentication system based on fusion of several biometrics combined with a policy manager and a new biometric modality: chirography which is based on user writing on multi-touch screens using their finger is introduced.
Abstract: User authentication in the context of a secure transaction needs to be continuously evaluated for the risks associated with the transaction authorization. The situation becomes even more critical when there are regulatory compliance requirements. Need for such systems have grown dramatically with the introduction of smart mobile devices which make it far easier for the user to complete such transaction quickly but with a huge exposure to risk. Biometrics can play a very significant role in addressing such problems as a key indicator of the user identity and thus reducing the risk of fraud. While unimodal biometrics authentication systems are being increasingly experimented by mainstream mobile system manufacturers (e.g., fingerprint in iOS), we explore various opportunities of reducing risk in a multimodal biometrics system. The multimodal system is based on fusion of several biometrics combined with a policy manager. A new biometric modality: chirography which is based on user writing on multi-touch screens using their finger is introduced. Coupling with chirography, we also use two other biometrics: face and voice. Our fusion strategy is based on inter-modality score level fusion that takes into account a voice quality measure. The proposed system has been evaluated on an in-house database that reflects the latest smart mobile devices. On this database, we demonstrate a very high accuracy multi-modal authentication system reaching an EER of 0.1% in an office environment and an EER of 0.5% in challenging noisy environments.

38 citations

Proceedings ArticleDOI
08 Dec 2008
TL;DR: Experimental results indicate the robustness of the proposed curvature-based characterization and its usefulness in improving the efficiency of existing fingerprint-based identification systems.
Abstract: One of the main challenges in building an efficient and scalable automatic fingerprint identification system is to identify features which are highly discriminative and are reproducible across different prints of the same finger. Most existing fingerprint matching approaches rely on minutiae geometry. Relatively, little effort has gone into analyzing ridge flow patterns present in the fingerprint, partly due to difficulty in extracting robust discriminative features from the fingerprint images. In this paper, we analyze the usefulness of ridge curvature information for fingerprint matching and classification applications. Specifically, for an indexing framework, we explore whether the curvature information can be utilized along with the existing minutiae geometry-based features for further reducing the number of potential candidates for fingerprint identification. Experimental results indicate the robustness of the proposed curvature-based characterization and its usefulness in improving the efficiency of existing fingerprint-based identification systems.

37 citations

Proceedings ArticleDOI
16 Jun 2019
TL;DR: A model which uses the learned parameters of a typical deep neural network and is secured from external adversaries by cryptography and blockchain technology is proposed and a new parameter tampering attack is proposed to properly justify the role of blockchain in machine learning.
Abstract: Several computer vision applications such as object detection and face recognition have started to completely rely on deep learning based architectures. These architectures, when paired with appropriate loss functions and optimizers, produce state-of-the-art results in a myriad of problems. On the other hand, with the advent of "blockchain", the cybersecurity industry has developed a new sense of trust which was earlier missing from both the technical and commercial perspectives. Employment of cryptographic hash as well as symmetric/asymmetric encryption and decryption algorithms ensure security without any human intervention (i.e., centralized authority). In this research, we present the synergy between the best of both these worlds. We first propose a model which uses the learned parameters of a typical deep neural network and is secured from external adversaries by cryptography and blockchain technology. As the second contribution of the proposed research, a new parameter tampering attack is proposed to properly justify the role of blockchain in machine learning.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Book
10 Mar 2005
TL;DR: This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators.
Abstract: A major new professional reference work on fingerprint security systems and technology from leading international researchers in the field Handbook provides authoritative and comprehensive coverage of all major topics, concepts, and methods for fingerprint security systems This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators

3,821 citations

Journal ArticleDOI
TL;DR: A fast fingerprint enhancement algorithm is presented, which can adaptively improve the clarity of ridge and valley structures of input fingerprint images based on the estimated local ridge orientation and frequency.
Abstract: In order to ensure that the performance of an automatic fingerprint identification/verification system will be robust with respect to the quality of input fingerprint images, it is essential to incorporate a fingerprint enhancement algorithm in the minutiae extraction module. We present a fast fingerprint enhancement algorithm, which can adaptively improve the clarity of ridge and valley structures of input fingerprint images based on the estimated local ridge orientation and frequency. We have evaluated the performance of the image enhancement algorithm using the goodness index of the extracted minutiae and the accuracy of an online fingerprint verification system. Experimental results show that incorporating the enhancement algorithm improves both the goodness index and the verification accuracy.

2,212 citations

01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations

Reference EntryDOI
15 Oct 2004

2,118 citations