scispace - formally typeset
Search or ask a question
Author

Nalini K. Ratha

Bio: Nalini K. Ratha is an academic researcher from IBM. The author has contributed to research in topics: Biometrics & Fingerprint recognition. The author has an hindex of 50, co-authored 216 publications receiving 12290 citations. Previous affiliations of Nalini K. Ratha include Michigan State University & University at Buffalo.


Papers
More filters
Patent
10 Sep 2020
TL;DR: In this paper, a multi-feature multi-matcher fusion (MMF) predictor was proposed for image recognition. And a system, method and program product for implementing image recognition was described.
Abstract: A system, method and program product for implementing image recognition. A system is disclosed that includes a training system for generating a multi-feature multi-matcher fusion (MMF) predictor for scoring pairs of images, the training system having: a neural network configurable to extract a set of feature spaces at different resolutions based on a training dataset; and an optimizer that processes the training dataset, extracted feature spaces and a set of matcher functions to generate the MMF predictor having a series of weighted feature/matcher components; and a prediction system that utilizes the MMF predictor to generate a prediction score indicative of a match for a pair of images.
01 Jan 2007
TL;DR: The tools, terminology and methods used in large-scale biometric identification applications are reviewed and the performance of the identification algorithms need to be significantly improved to successfully handle millions of persons in the biometrics database matching thousands of transactions per day.
Abstract: In addition to law enforcement applications, many civil applications will require biometrics-based identification systems and a large percentage is predicted to rely on fingerprints as an identifer. Even though fingerprint as a biometric has been used in many identification applications, mostly these applications have been semi-automatic. The results of such systems often require to be validated by human experts. With the increased use of biometric identification systems in many realtime applications, the challenges for large-scale biometric identification are significant both in terms of improving accuracy and response time. In this paper, we briey review the tools, terminology and methods used in large-scale biometrics identification applications. The performance of the identification algorithms need to be significantly improved to successfully handle millions of persons in the biometrics database matching thousands of transactions per day.
DOI
TL;DR: In this article , the behavior of face recognition models is evaluated to understand if similar to humans, models also encode group-specific features for face recognition, along with where bias is encoded in these models.
Abstract: Humans are known to favor other individuals who exist in similar groups as them, exhibiting biased behavior, which is termed as in-group bias. The groups could be formed on the basis of ethnicity, age, or even a favorite sports team. Taking cues from aforementioned observation, we inspect if deep learning networks also mimic this human behavior, and are affected by in-group and out-group biases. In this first of its kind research, the behavior of face recognition models is evaluated to understand if similar to humans, models also encode group-specific features for face recognition, along with where bias is encoded in these models. Analysis has been performed for two use-cases of bias: age and ethnicity in face recognition models. Thorough experimental evaluation leads us to several insights: (i) deep learning models focus on different facial regions for different ethnic groups and age groups, and (ii) large variation in face verification performance is also observed across different sub-groups for both known and our own trained deep networks. Based on the observations, a novel bias index is presented for evaluating a trained model’s level of bias. We believe that a better understanding of how deep learning models work and encode bias, along with the proposed bias index would enable researchers to address the challenge of bias in AI, and develop more robust and fairer algorithms for mitigating bias as well as developing fairer models.

Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Book
10 Mar 2005
TL;DR: This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators.
Abstract: A major new professional reference work on fingerprint security systems and technology from leading international researchers in the field Handbook provides authoritative and comprehensive coverage of all major topics, concepts, and methods for fingerprint security systems This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators

3,821 citations

Journal ArticleDOI
TL;DR: A fast fingerprint enhancement algorithm is presented, which can adaptively improve the clarity of ridge and valley structures of input fingerprint images based on the estimated local ridge orientation and frequency.
Abstract: In order to ensure that the performance of an automatic fingerprint identification/verification system will be robust with respect to the quality of input fingerprint images, it is essential to incorporate a fingerprint enhancement algorithm in the minutiae extraction module. We present a fast fingerprint enhancement algorithm, which can adaptively improve the clarity of ridge and valley structures of input fingerprint images based on the estimated local ridge orientation and frequency. We have evaluated the performance of the image enhancement algorithm using the goodness index of the extracted minutiae and the accuracy of an online fingerprint verification system. Experimental results show that incorporating the enhancement algorithm improves both the goodness index and the verification accuracy.

2,212 citations

01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations

Reference EntryDOI
15 Oct 2004

2,118 citations