scispace - formally typeset
Search or ask a question
Author

Nam Hoon Kim

Bio: Nam Hoon Kim is an academic researcher from Chonbuk National University. The author has contributed to research in topics: Graphene & Supercapacitor. The author has an hindex of 69, co-authored 321 publications receiving 20753 citations. Previous affiliations of Nam Hoon Kim include Kansas State University & Center for Advanced Materials.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the structure, preparation and properties of polymer/graphene nanocomposites are discussed in general along with detailed examples drawn from the scientific literature, and the percolation threshold can be achieved at a very lower filler loading.

2,999 citations

Journal ArticleDOI
TL;DR: A detailed review on the advances of chemical functionalization of graphene is presented in this article, where the surface modification of graphene oxide followed by reduction has been carried out to obtain functionalized graphene.

1,517 citations

Journal ArticleDOI
TL;DR: This review discusses the application of graphene for the detection of glucose, Cyt-c, NADH, Hb, cholesterol, AA, UA, DA, and H(2)O(2).

1,145 citations

Journal ArticleDOI
TL;DR: In this article, a review examines the inspiration for high temperature proton exchange membrane fuel cells (PEMFCs) development, the technological constraints, and recent advances, and a detailed discussion of the synthesis of polymer, membrane fabrication and physicochemical characterizations is provided.

779 citations

Journal ArticleDOI
TL;DR: In this article, a critical review of carbon-based nanostructured materials and their composites for use as supercapacitor electrodes is provided, focusing on basic principles of supercapACitors and various factors affecting their performance.
Abstract: This critical review provides an overview of current research on carbon-based nanostructured materials and their composites for use as supercapacitor electrodes. Particular emphasis has been directed towards basic principles of supercapacitors and various factors affecting their performance. The focus of the review is the detailed discussion regarding the performance and stability of carbon-based materials and their composites. Pseudo-active species, such as, conducting polymer/metal oxide have been found to exhibit pseudo-capacitive behavior and carbon-based materials demonstrate electrical double layer capacitance. Carbon-based materials, such as, graphene, carbon nanotubes, and carbon nanofibers, provide high surface area for the deposition of conducting polymer/metal oxide that facilitates the efficient ion diffusion phenomenon and contribute towards higher specific capacitance of the carbon based composite materials with excellent cyclic stability. However, further scope of research still exists from the view point of developing high energy supercapacitor devices in a cost effective and simple way. This review will be of value to researchers and emerging scientists dealing with or interested in carbon chemistry.

655 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations