Author
Nam Nguyen
Bio: Nam Nguyen is an academic researcher from Curtin University. The author has contributed to research in topics: Hidden Markov model & Markov model. The author has an hindex of 6, co-authored 9 publications receiving 154 citations.
Papers
More filters
01 Jan 2003
TL;DR: A novel algorithm is proposed to allocate objects to cameras using the object-to-camera distance while taking into account occlusion, and results show that the system can coordinate cameras to track people and can deal well with Occlusion.
50 citations
01 Jan 2006
TL;DR: The main contributions of this paper lie in the integration of multiple HHMMs for recognising high-level behaviours of multiple people and the construction of the Rao-Blackwellised particle filters (RBPF) for approximate inference.
Abstract: Recognising behaviours of multiple people, especially high-level behaviours, is an important task in surveillance systems. When the reliable assignment of people to the set of observations is unavailable, this task becomes complicated. To solve this task, we present an approach, in which the hierarchical hidden Markov model (HHMM) is used for modeling the behaviour of each person and the joint probabilistic data association filters (JPDAF) is applied for data association. The main contributions of this paper lie in the integration of multiple HHMMs for recognising high-level behaviours of multiple people and the construction of the Rao-Blackwellised particle filters (RBPF) for approximate inference. Preliminary experimental results in a real environment show the robustness of our integrated method in behaviour recognition and its advantage over the use of Kalman filter in tracking people.
43 citations
11 Dec 2007
TL;DR: A novel method named random subspace two-dimensional PCA (RS-2DPCA), which combines the 2D PCA method with the random sub space (RS) technique, which can avoid the overfitting problem and achieve high recognition accuracy.
Abstract: The two-dimensional Principal Component Analysis (2DPCA) is a robust method in face recognition. Much recent research shows that the 2DPCA is more reliable than the well-known PCA method in recognising human face. However, in many cases, this method tends to be overfitted to sample data. In this paper, we proposed a novel method named random subspace two-dimensional PCA (RS-2DPCA), which combines the 2DPCA method with the random subspace (RS) technique. The RS-2DPCA inherits the advantages of both the 2DPCA and RS technique, thus it can avoid the overfitting problem and achieve high recognition accuracy. Experimental results in three benchmark face data sets - the ORL database, the Yale face database and the extended Yale face database B - confirm our hypothesis that the RS-2DPCA is superior to the 2DPCA itself.
20 citations
11 Aug 2002
TL;DR: The novelty of the paper lies in the implementation of a scalable framework in the context of both the scale of behaviors and the size of the environment, making it ideal for distributed surveillance.
Abstract: We present a distributed, surveillance system that works in large and complex indoor environments. To track and recognize behaviors of people, we propose the use of the abstract hidden Markov model (AHMM), which can be considered as an extension of the hidden Markov model (HMM), where the single Markov chain in the HMM is replaced by a hierarchy of Markov policies. In this policy hierarchy, each behavior can be represented as a policy at the corresponding level of abstraction. The noisy observations are handled in the same way as an HMM and an efficient Rao-Blackwellised particle filter method is used to compute the probabilities of the current policy at different levels of the hierarchy. The novelty of the paper lies in the implementation of a scalable framework in the context of both the scale of behaviors and the size of the environment, making it ideal for distributed surveillance. Results of the system demonstrate the ability to answer queries about people's behaviors at different levels of details using multiple cameras in a large and complex indoor environment.
17 citations
TL;DR: The techniques that can be used to learn the different camera noise models and the human movement models to be used in this distributed surveillance system are described and results are provided showing the system is able to identify behaviours of people from their movement signatures.
Abstract: In surveillance systems for monitoring people behaviours, it is important to build systems that can adapt to the signatures of people’s tasks and movements in the environment. At the same time, it is important to cope with noisy observations produced by a set of cameras with possibly different characteristics. In previous work, we have implemented a distributed surveillance system designed for complex indoor environments [1]. The system uses the Abstract Hidden Markov mEmory Model (AHMEM) for modelling and specifying complex human behaviours that can take place in the environment. Given a sequence of observations from a set of cameras, the system employs approximate probabilistic inference to compute the likelihood of different possible behaviours in real-time. This paper describes the techniques that can be used to learn the different camera noise models and the human movement models to be used in this system. The system is able to monitor and classify people behaviours as data is being gathered, and we provide classification results showing the system is able to identify behaviours of people from their movement signatures.
9 citations
Cited by
More filters
TL;DR: The emergence of `ambient-assisted living’ (AAL) tools for older adults based on ambient intelligence paradigm is summarized and the state-of-the-art AAL technologies, tools, and techniques are summarized.
Abstract: In recent years, we have witnessed a rapid surge in assisted living technologies due to a rapidly aging society. The aging population, the increasing cost of formal health care, the caregiver burden, and the importance that the individuals place on living independently, all motivate development of innovative-assisted living technologies for safe and independent aging. In this survey, we will summarize the emergence of `ambient-assisted living” (AAL) tools for older adults based on ambient intelligence paradigm. We will summarize the state-of-the-art AAL technologies, tools, and techniques, and we will look at current and future challenges.
1,000 citations
01 Nov 2012
TL;DR: A comprehensive survey to examine the development and current status of various aspects of sensor-based activity recognition, making a primary distinction in this paper between data-driven and knowledge-driven approaches.
Abstract: Research on sensor-based activity recognition has, recently, made significant progress and is attracting growing attention in a number of disciplines and application domains. However, there is a lack of high-level overview on this topic that can inform related communities of the research state of the art. In this paper, we present a comprehensive survey to examine the development and current status of various aspects of sensor-based activity recognition. We first discuss the general rationale and distinctions of vision-based and sensor-based activity recognition. Then, we review the major approaches and methods associated with sensor-based activity monitoring, modeling, and recognition from which strengths and weaknesses of those approaches are highlighted. We make a primary distinction in this paper between data-driven and knowledge-driven approaches, and use this distinction to structure our survey. We also discuss some promising directions for future research.
944 citations
08 Apr 2005
TL;DR: This survey describes the current state-of-the-art in the development of automated visual surveillance systems to provide researchers in the field with a summary of progress achieved to date and to identify areas where further research is needed.
Abstract: This survey describes the current state-of-the-art in the development of automated visual surveillance systems so as to provide researchers in the field with a summary of progress achieved to date and to identify areas where further research is needed. The ability to recognise objects and humans, to describe their actions and interactions from information acquired by sensors is essential for automated visual surveillance. The increasing need for intelligent visual surveillance in commercial, law enforcement and military applications makes automated visual surveillance systems one of the main current application domains in computer vision. The emphasis of this review is on discussion of the creation of intelligent distributed automated surveillance systems. The survey concludes with a discussion of possible future directions.
712 citations
20 Jun 2005
TL;DR: The switching hidden semi-markov model (S-HSMM) is introduced, a two-layered extension of thehidden semi-Markov model for the modeling task and an effective scheme to detect abnormality without the need for training on abnormal data is proposed.
Abstract: This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the activities and their typical duration. To this end, we introduce the switching hidden semi-markov model (S-HSMM), a two-layered extension of the hidden semi-Markov model (HSMM) for the modeling task. Activities are modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their duration using HSMMs; the top layer represents a sequence of high-level activities where each high-level activity is made of a sequence of atomic activities. We consider two methods for modeling duration: the classic explicit duration model using multinomial distribution, and the novel use of the discrete Coxian distribution. In addition, we propose an effective scheme to detect abnormality without the need for training on abnormal data. Experimental results show that the S-HSMM performs better than existing models including the flat HSMM and the hierarchical hidden Markov model in both classification and abnormality detection tasks, alleviating the need for presegmented training data. Furthermore, our discrete Coxian duration model yields better computation time and generalization error than the classic explicit duration model.
580 citations
TL;DR: This paper introduces the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network, and proposes a novel plan recognition framework based on the AHMM as the plan execution model.
Abstract: In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem on-line plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process representing the execution of the agent's plan. Our contributions in this paper are twofold. In terms of probabilistic inference, we introduce the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network. We then describe an application of the Rao-Blackwellised Particle Filter to the AHMM which allows us to construct an efficient, hybrid inference method for this model. In terms of plan recognition, we propose a novel plan recognition framework based on the AHMM as the plan execution model. The Rao-Blackwellised hybrid inference for AHMM can take advantage of the independence properties inherent in a model of plan execution, leading to an algorithm for online probabilistic plan recognition that scales well with the number of levels in the plan hierarchy. This illustrates that while stochastic models for plan execution can be complex, they exhibit special structures which, if exploited, can lead to efficient plan recognition algorithms. We demonstrate the usefulness of the AHMM framework via a behaviour recognition system in a complex spatial environment using distributed video surveillance data.
296 citations