scispace - formally typeset
Search or ask a question
Author

Nam-Trung Nguyen

Bio: Nam-Trung Nguyen is an academic researcher from Griffith University. The author has contributed to research in topics: Microfluidics & Microchannel. The author has an hindex of 72, co-authored 547 publications receiving 21912 citations. Previous affiliations of Nam-Trung Nguyen include National Institute of Education & Monash University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the progress on the recent development of micromixers and present different types and designs of active and passive MCMs, as well as the operation points of the MCMs.
Abstract: This review reports the progress on the recent development of micromixers. The review first presents the different micromixer types and designs. Micromixers in this review are categorized as passive micromixers and active micromixers. Due to the simple fabrication technology and the easy implementation in a complex microfluidic system, passive micromixers will be the focus of this review. Next, the review discusses the operation points of the micromixers based on characteristic dimensionless numbers such as Reynolds number Re, Peclet number Pe, and in dynamic cases the Strouhal number St. The fabrication technologies for different mixer types are also analysed. Quantification techniques for evaluation of the performance of micromixers are discussed. Finally, the review addresses typical applications of micromixers.

1,651 citations

Book
01 Jan 2002
TL;DR: In conclusion, microfluidics for Life Sciences and Chemistry Characterization Techniques for Microfluidic should be used for both internal and external flow control of fluid Mechanics in Micro Scale.
Abstract: Introduction Fluid Mechanics in Micro Scale Microtechnologies for Microfluidics Microfluidics for External Flow Control Microfluidics for Internal Flow Control Microfluidics for Life Sciences and Chemistry Characterization Techniques for Microfluidics

1,013 citations

Journal ArticleDOI
TL;DR: This review discusses the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems and presents a comprehensive review of recent developments and key applications of inertialMicrofluidics systems according to their microchannel structures.
Abstract: In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.

711 citations

Journal ArticleDOI
TL;DR: Comparisons regarding pump size, flow rate, and backpressure will help readers to decide their proper design before starting a microfluidics project.
Abstract: Microfluidics has emerged from the MEMS-technology as an important research field and a promising market. We give an overview on one of the most important microfluidic components: the micropump. In the last decade, various micropumps have been developed. There are only a few review papers on microfluidic devices and none of them were dedicated only to micropumps. This review paper outlines systematically the pump principles and their realization with MEMS-technology. Comparisons regarding pump size, flow rate, and backpressure will help readers to decide their proper design before starting a microfluidics project. Different pump principles are compared graphically and discussed in terms of their advantages and disadvantages for particular applications

566 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
27 Jul 2006-Nature
TL;DR: The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field that has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology.
Abstract: The manipulation of fluids in channels with dimensions of tens of micrometres--microfluidics--has emerged as a distinct new field. Microfluidics has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology. But the field is still at an early stage of development. Even as the basic science and technological demonstrations develop, other problems must be addressed: choosing and focusing on initial applications, and developing strategies to complete the cycle of development, including commercialization. The solutions to these problems will require imagination and ingenuity.

8,260 citations

Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations