scispace - formally typeset
Search or ask a question
Author

Nam Woo Kim

Bio: Nam Woo Kim is an academic researcher from Geron Corporation. The author has contributed to research in topics: Telomerase & Telomere. The author has an hindex of 18, co-authored 33 publications receiving 10764 citations. Previous affiliations of Nam Woo Kim include University of Texas System & University of Texas at Austin.

Papers
More filters
Journal ArticleDOI
23 Dec 1994-Science
TL;DR: A highly sensitive assay for measuring telomerase activity was developed in this paper, which showed that telomerases appear to be stringently repressed in normal human somatic tissues but reactivated in cancer, where immortal cells are likely required to maintain tumor growth.
Abstract: Synthesis of DNA at chromosome ends by telomerase may be necessary for indefinite proliferation of human cells. A highly sensitive assay for measuring telomerase activity was developed. In cultured cells representing 18 different human tissues, 98 of 100 immortal and none of 22 mortal populations were positive for telomerase. Similarly, 90 of 101 biopsies representing 12 human tumor types and none of 50 normal somatic tissues were positive. Normal ovaries and testes were positive, but benign tumors such as fibroids were negative. Thus, telomerase appears to be stringently repressed in normal human somatic tissues but reactivated in cancer, where immortal cells are likely required to maintain tumor growth.

7,033 citations

Journal ArticleDOI
TL;DR: In vitro transcription and translation of hTRT when co-synthesized or mixed with hTR reconstitutes telomerase activity that exhibits enzymatic properties like those of the native enzyme.
Abstract: The maintenance of chromosome termini, or telomeres, requires the action of the enzyme telomerase, as conventional DNA poly-merases cannot fully replicate the ends of linear molecules1–4. Telomerase is expressed and telomere length is maintained in human germ cells and the great majority of primary human tumours5,6. However, telomerase is not detectable in most normal somatic cells; this corresponds to the gradual telomere loss observed with each cell division7–9. It has been proposed that telomere erosion eventually signals entry into senescence or cell crisis and that activation of telomerase is usually required for immortal cell proliferation10. In addition to the human telomerase RNA component (hTR; ref. 11), TP1/TLP1 (refs 12,13), a protein that is homologous to the p80 protein associated with the Tetrahymena enzyme14, has been identified in humans. More recently, the human telomerase reverse transcriptase (hTRT; refs 15, 16), which is homologous to the reverse transcriptase (RT)-like proteins associated with the Euplotes aediculatus (Ea_p123), Saccharomyces cerevisiae (Est2p) and Schizosaccharomyces pombe (SpTrt!) telomerases15,17, has been reported to be a telomerase protein subunit. A catalytic function has been demonstrated for Est2p in the RT-like class but not for p80 or its homologues17,18. We now report that in vitro transcription and translation of hTRT when co-synthesized or mixed with hTR reconstitutes telomerase activity that exhibits enzymatic properties like those of the native enzyme. Single amino-acid changes in conserved telomerase-specific and RT motifs reduce or abolish activity, providing direct evidence that hTRT is the catalytic protein component of telomerase. Normal human diploid cells transiently expressing hTRT possessed telomerase activity, demonstrating that hTRT is the limiting component necessary for restoration of telomerase activity in these cells. The ability to reconstitute telomerase permits further analysis of its biochemical and biological roles in cell aging and carcinogenesis.

987 citations

Journal ArticleDOI
Nam Woo Kim1, Fred Wu1
TL;DR: Primers, controls and quantification methods for the TRAP assay are described to accurately measure the level of telomerase activity in clinical samples and can be used to estimate the processivity of telomersase activity.
Abstract: The telomeric repeat amplification protocol (TRAP) assay has been used to test telomerase activity in numerous cancer specimens. We describe primers, controls and quantification methods for the TRAP assay to accurately measure the level of telomerase activity in clinical samples. The assay is reliable and reproducible in routine analyses and can be used to estimate the processivity of telomerase activity.

693 citations

Journal ArticleDOI
01 Mar 1995
TL;DR: A novel procedure for the extraction and detection of telomerase activity was developed which resulted in an estimated 104 fold improvement in detectability compared with previous methods, and new methods to perform telomersase assays without the use of radioisotopes are described.
Abstract: The association of human telomerase activity with an indefinite replicative capacity of cells in vitro and advanced tumors in vivo is gaining wide support. The increasing interest in studying various aspects of telomerase expression in cancer required the development of a sensitive and reliable protocol for the extraction and detection of telomerase activity in cell culture material, and from small tissue samples obtained from biopsy, surgical reaction of tumors, and autopsy. Recently a novel procedure for the extraction and detection of telomerase activity was developed (Science 1994; 266: 2011-2015) which resulted in an estimated 10 4 fold improvement in detectability compared with previous methods. The described procedures not only dramatically increased sensitivity but also allowed fast and efficient detec- tion of telomerase activity in a large number of samples. A number of technical aspects which are of critical importance for reproducibility and relia- bility of this assay using clinical material are addressed in this report. In addition, new methods to perform telomerase assays without the use of radioisotopes are described.

425 citations


Cited by
More filters
Journal ArticleDOI
23 Dec 1994-Science
TL;DR: A highly sensitive assay for measuring telomerase activity was developed in this paper, which showed that telomerases appear to be stringently repressed in normal human somatic tissues but reactivated in cancer, where immortal cells are likely required to maintain tumor growth.
Abstract: Synthesis of DNA at chromosome ends by telomerase may be necessary for indefinite proliferation of human cells. A highly sensitive assay for measuring telomerase activity was developed. In cultured cells representing 18 different human tissues, 98 of 100 immortal and none of 22 mortal populations were positive for telomerase. Similarly, 90 of 101 biopsies representing 12 human tumor types and none of 50 normal somatic tissues were positive. Normal ovaries and testes were positive, but benign tumors such as fibroids were negative. Thus, telomerase appears to be stringently repressed in normal human somatic tissues but reactivated in cancer, where immortal cells are likely required to maintain tumor growth.

7,033 citations

Journal ArticleDOI
16 Jan 1998-Science
TL;DR: In this article, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomere catalytic subunit.
Abstract: Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that telomere shortening is the molecular clock that triggers senescence. To test this hypothesis, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomerase catalytic subunit. In contrast to telomerase-negative control clones, which exhibited telomere shortening and senescence, telomerase-expressing clones had elongated telomeres, divided vigorously, and showed reduced staining for β-galactosidase, a biomarker for senescence. Notably, the telomerase-expressing clones have a normal karyotype and have already exceeded their normal life-span by at least 20 doublings, thus establishing a causal relationship between telomere shortening and in vitro cellular senescence. The ability to maintain normal human cells in a phenotypically youthful state could have important applications in research and medicine.

4,870 citations

Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations

Journal ArticleDOI
TL;DR: All major types of cancer have been screened and the presence of telomerase activity has been detected in the vast majority of cases, and a summary, in table form, of the current data is provided.

2,762 citations

Journal ArticleDOI
TL;DR: Evidence is provided that psychological stress--both perceived stress and chronicity of stress--is significantly associated with higher oxidative stress, lower telomerase activity, and shorter telomere length, in peripheral blood mononuclear cells from healthy premenopausal women.
Abstract: Numerous studies demonstrate links between chronic stress and indices of poor health, including risk factors for cardiovascular disease and poorer immune function. Nevertheless, the exact mechanisms of how stress gets “under the skin” remain elusive. We investigated the hypothesis that stress impacts health by modulating the rate of cellular aging. Here we provide evidence that psychological stress— both perceived stress and chronicity of stress—is significantly associated with higher oxidative stress, lower telomerase activity, and shorter telomere length, which are known determinants of cell senescence and longevity, in peripheral blood mononuclear cells from healthy premenopausal women. Women with the highest levels of perceived stress have telomeres shorter on average by the equivalent of at least one decade of additional aging compared to low stress women. These findings have implications for understanding how, at the cellular level, stress may promote earlier onset of age-related diseases.

2,706 citations