scispace - formally typeset
Search or ask a question
Author

Namrata Vaswani

Bio: Namrata Vaswani is an academic researcher from Iowa State University. The author has contributed to research in topics: Subspace topology & Compressed sensing. The author has an hindex of 36, co-authored 162 publications receiving 4907 citations. Previous affiliations of Namrata Vaswani include University of California, Riverside & Indian Institute of Technology Delhi.


Papers
More filters
Journal ArticleDOI
28 Jun 2009
TL;DR: The idea of the proposed solution (modified-CS) is to solve a convex relaxation of the following problem: find the signal that satisfies the data constraint and is sparsest outside of T, and obtain sufficient conditions for exact reconstruction using modified-CS.
Abstract: We study the problem of reconstructing a sparse signal from a limited number of its linear projections when a part of its support is known, although the known part may contain some errors. The “known” part of the support, denoted T, may be available from prior knowledge. Alternatively, in a problem of recursively reconstructing time sequences of sparse spatial signals, one may use the support estimate from the previous time instant as the “known” part. The idea of our proposed solution (modified-CS) is to solve a convex relaxation of the following problem: find the signal that satisfies the data constraint and is sparsest outside of T. We obtain sufficient conditions for exact reconstruction using modified-CS. These are much weaker than those needed for compressive sensing (CS) when the sizes of the unknown part of the support and of errors in the known part are small compared to the support size. An important extension called regularized modified-CS (RegModCS) is developed which also uses prior signal estimate knowledge. Simulation comparisons for both sparse and compressible signals are shown.

553 citations

Proceedings ArticleDOI
12 Dec 2008
TL;DR: This work considers the problem of reconstructing time sequences of spatially sparse signals from a limited number of linear "incoherent" measurements, in real-time, and uses Compressed Sensing to estimate the support set of the initial signal's transform vector.
Abstract: We consider the problem of reconstructing time sequences of spatially sparse signals (with unknown and time-varying sparsity patterns) from a limited number of linear "incoherent" measurements, in real-time. The signals are sparse in some transform domain referred to as the sparsity basis. For a single spatial signal, the solution is provided by Compressed Sensing (CS). The question that we address is, for a sequence of sparse signals, can we do better than CS, if (a) the sparsity pattern of the signal's transform coefficients' vector changes slowly over time, and (b) a simple prior model on the temporal dynamics of its current non-zero elements is available. The overall idea of our solution is to use CS to estimate the support set of the initial signal's transform vector. At future times, run a reduced order Kalman filter with the currently estimated support and estimate new additions to the support set by applying CS to the Kalman innovations or filtering error (whenever it is "large").

317 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a magazine-style overview of the entire field of robust subspace learning (RSL) and tracking (RST) for long data sequences, where the authors assume that the data lies in a low-dimensional subspace that can change over time, albeit gradually.
Abstract: Principal component analysis (PCA) is one of the most widely used dimension reduction techniques. A related easier problem is termed subspace learning or subspace estimation. Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning (RSL) or robust PCA (RPCA). For long data sequences, if one tries to use a single lower-dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of RSL and tracking.

264 citations

Journal ArticleDOI
TL;DR: This is the first attempt to implement an approximate particle filtering algorithm in the geometric active contour framework that can be used for tracking moving and deforming objects on a (theoretically) infinite dimensional state space.
Abstract: Tracking deforming objects involves estimating the global motion of the object and its local deformations as a function of time. Tracking algorithms using Kalman filters or particle filters have been proposed for finite dimensional representations of shape, but these are dependent on the chosen parametrization and cannot handle changes in curve topology. Geometric active contours provide a framework which is parametrization independent and allow for changes in topology, in the present work, we formulate a particle filtering algorithm in the geometric active contour framework that can be used for tracking moving and deforming objects. To the best of our knowledge, this is the first attempt to implement an approximate particle filtering algorithm for tracking on a (theoretically) infinite dimensional state space.

196 citations

Journal ArticleDOI
TL;DR: A recognition engine is developed which can reliably recognize these gestures despite individual variations and has the ability to detect start and end of gesture sequences in an automated fashion.

167 citations


Cited by
More filters
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: This survey reviews recent trends in video-based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement.

2,738 citations

Journal ArticleDOI
TL;DR: This article provides a detailed overview of various state-of-the-art research papers on human activity recognition, discussing both the methodologies developed for simple human actions and those for high-level activities.
Abstract: Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applications require an automated recognition of high-level activities, composed of multiple simple (or atomic) actions of persons. This article provides a detailed overview of various state-of-the-art research papers on human activity recognition. We discuss both the methodologies developed for simple human actions and those for high-level activities. An approach-based taxonomy is chosen that compares the advantages and limitations of each approach. Recognition methodologies for an analysis of the simple actions of a single person are first presented in the article. Space-time volume approaches and sequential approaches that represent and recognize activities directly from input images are discussed. Next, hierarchical recognition methodologies for high-level activities are presented and compared. Statistical approaches, syntactic approaches, and description-based approaches for hierarchical recognition are discussed in the article. In addition, we further discuss the papers on the recognition of human-object interactions and group activities. Public datasets designed for the evaluation of the recognition methodologies are illustrated in our article as well, comparing the methodologies' performances. This review will provide the impetus for future research in more productive areas.

2,084 citations

Journal ArticleDOI
01 May 2007
TL;DR: A survey on gesture recognition with particular emphasis on hand gestures and facial expressions is provided, and applications involving hidden Markov models, particle filtering and condensation, finite-state machines, optical flow, skin color, and connectionist models are discussed in detail.
Abstract: Gesture recognition pertains to recognizing meaningful expressions of motion by a human, involving the hands, arms, face, head, and/or body. It is of utmost importance in designing an intelligent and efficient human-computer interface. The applications of gesture recognition are manifold, ranging from sign language through medical rehabilitation to virtual reality. In this paper, we provide a survey on gesture recognition with particular emphasis on hand gestures and facial expressions. Applications involving hidden Markov models, particle filtering and condensation, finite-state machines, optical flow, skin color, and connectionist models are discussed in detail. Existing challenges and future research possibilities are also highlighted

1,797 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of efforts in the past couple of decades to address the problems of representation, recognition, and learning of human activities from video and related applications is presented.
Abstract: The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as content-based video annotation and retrieval, highlight extraction and video summarization require recognition of the activities occurring in the video. The analysis of human activities in videos is an area with increasingly important consequences from security and surveillance to entertainment and personal archiving. Several challenges at various levels of processing-robustness against errors in low-level processing, view and rate-invariant representations at midlevel processing and semantic representation of human activities at higher level processing-make this problem hard to solve. In this review paper, we present a comprehensive survey of efforts in the past couple of decades to address the problems of representation, recognition, and learning of human activities from video and related applications. We discuss the problem at two major levels of complexity: 1) "actions" and 2) "activities." "Actions" are characterized by simple motion patterns typically executed by a single human. "Activities" are more complex and involve coordinated actions among a small number of humans. We will discuss several approaches and classify them according to their ability to handle varying degrees of complexity as interpreted above. We begin with a discussion of approaches to model the simplest of action classes known as atomic or primitive actions that do not require sophisticated dynamical modeling. Then, methods to model actions with more complex dynamics are discussed. The discussion then leads naturally to methods for higher level representation of complex activities.

1,426 citations