scispace - formally typeset
Search or ask a question
Author

Nan Rosenbloom

Other affiliations: Texas A&M University
Bio: Nan Rosenbloom is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Climate model & Climate change. The author has an hindex of 34, co-authored 91 publications receiving 5384 citations. Previous affiliations of Nan Rosenbloom include Texas A&M University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that the inclusion of nutrient cycle dynamics, specifically the close coupling between carbon and nitrogen cycles, in a terrestrial biogeochemistry component of a global coupled climate system model leads to fundamentally altered behavior for several of the most critical feedback mechanisms operating between the land biosphere and the global climate system.
Abstract: [1] Nutrient cycling affects carbon uptake by the terrestrial biosphere and imposes controls on carbon cycle response to variation in temperature and precipitation, but nutrient cycling is ignored in most global coupled models of the carbon cycle and climate system. We demonstrate here that the inclusion of nutrient cycle dynamics, specifically the close coupling between carbon and nitrogen cycles, in a terrestrial biogeochemistry component of a global coupled climate system model leads to fundamentally altered behavior for several of the most critical feedback mechanisms operating between the land biosphere and the global climate system. Carbon-nitrogen cycle coupling reduces the simulated global terrestrial carbon uptake response to increasing atmospheric CO2 concentration by 74%, relative to a carbon-only counterpart model. Global integrated responses of net land carbon exchange to variation in temperature and precipitation are significantly damped by carbon-nitrogen cycle coupling. The carbon cycle responses to temperature and precipitation variation are reduced in magnitude as atmospheric CO2 concentration rises for the coupled carbon-nitrogen model, but increase in magnitude for the carbon-only counterpart. Our results suggest that previous carbon-only treatments of climate-carbon cycle coupling likely overestimate the terrestrial biosphere's capacity to ameliorate atmospheric CO2 increases through direct fertilization. The next generation of coupled climate-biogeochemistry model projections for future atmospheric CO2 concentration and climate change should include explicit, prognostic treatment of terrestrial carbon-nitrogen cycle coupling.

569 citations

Journal ArticleDOI
17 Mar 2000-Science
TL;DR: The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate.
Abstract: The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.

545 citations

Journal ArticleDOI
TL;DR: In this article, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850-2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community.
Abstract: The climate of the past millennium provides a baseline for understanding the background of natural climate variability upon which current anthropogenic changes are superimposed. As this period also contains high data density from proxy sources (e.g., ice cores, stalagmites, corals, tree rings, and sediments), it provides a unique opportunity for understanding both global and regional-scale climate responses to natural forcing. Toward that end, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850–2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community. This ensemble includes simulations forced with the transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land-use conditions, and orbital parameters, both together and individually. The CESM-LME thus allows for evaluation of the relative contributions of external forcing and internal variability to changes evident in the paleoclimate data record, a...

337 citations

Journal ArticleDOI
TL;DR: The Pliocene Model Intercomparison Project (PIP) as mentioned in this paper quantifies uncertainties in model outputs through a coordinated multi-model and multimodel/data intercomparisons.
Abstract: Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.

318 citations

Journal ArticleDOI
TL;DR: In this paper, a variety of methods for determining steady state solutions for Biome-BGC, a coupled model of terrestrial water, carbon, and nitrogen dynamics, were tested.

314 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal ArticleDOI
06 Oct 2011-Nature
TL;DR: In this article, a new generation of experiments and soil carbon models were proposed to predict the SOM response to global warming, and they showed that molecular structure alone alone does not control SOM stability.
Abstract: Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

4,219 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations