scispace - formally typeset
Search or ask a question
Author

Nancy A. Jenkins

Bio: Nancy A. Jenkins is an academic researcher from Houston Methodist Hospital. The author has contributed to research in topics: Gene & Gene mapping. The author has an hindex of 155, co-authored 741 publications receiving 101587 citations. Previous affiliations of Nancy A. Jenkins include Institute of Molecular and Cell Biology & University of Texas MD Anderson Cancer Center.


Papers
More filters
Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Data and reports indicating that S. cerevisiae msh2 mutations cause an instability of dinucleotide repeats like those associated with H NPCC suggest that hMSH2 is the HNPCC gene.

2,763 citations

Journal ArticleDOI
TL;DR: A recombination system has been developed for efficient chromosome engineering in Escherichia coli by using electroporated linear DNA using a defective lambda prophage, which will be especially useful for the engineering of large bacterial plasmids such as those from bacterial artificial chromosome libraries.
Abstract: A recombination system has been developed for efficient chromosome engineering in Escherichia coli by using electroporated linear DNA. A defective lambda prophage supplies functions that protect and recombine an electroporated linear DNA substrate in the bacterial cell. The use of recombination eliminates the requirement for standard cloning as all novel joints are engineered by chemical synthesis in vitro and the linear DNA is efficiently recombined into place in vivo. The technology and manipulations required are simple and straightforward. A temperature-dependent repressor tightly controls prophage expression, and, thus, recombination functions can be transiently supplied by shifting cultures to 42 degrees C for 15 min. The efficient prophage recombination system does not require host RecA function and depends primarily on Exo, Beta, and Gam functions expressed from the defective lambda prophage. The defective prophage can be moved to other strains and can be easily removed from any strain. Gene disruptions and modifications of both the bacterial chromosome and bacterial plasmids are possible. This system will be especially useful for the engineering of large bacterial plasmids such as those from bacterial artificial chromosome libraries.

1,790 citations

Journal ArticleDOI
Andrew V. Biankin1, Andrew V. Biankin2, Andrew V. Biankin3, Nicola Waddell4, Karin S. Kassahn4, Marie-Claude Gingras5, Lakshmi Muthuswamy6, Amber L. Johns1, David Miller4, Peter Wilson4, Ann-Marie Patch4, Jianmin Wu1, David K. Chang1, David K. Chang2, David K. Chang3, Mark J. Cowley1, Brooke Gardiner4, Sarah Song4, Ivon Harliwong4, Senel Idrisoglu4, Craig Nourse4, Ehsan Nourbakhsh4, Suzanne Manning4, Shivangi Wani4, Milena Gongora4, Marina Pajic1, Christopher J. Scarlett7, Christopher J. Scarlett1, Anthony J. Gill8, Anthony J. Gill9, Anthony J. Gill1, Andreia V. Pinho1, Ilse Rooman1, Matthew J. Anderson4, Oliver Holmes4, Conrad Leonard4, Darrin Taylor4, Scott Wood4, Qinying Xu4, Katia Nones4, J. Lynn Fink4, Angelika N. Christ4, Timothy J. C. Bruxner4, Nicole Cloonan4, Gabriel Kolle10, Felicity Newell4, Mark Pinese1, R. Scott Mead11, R. Scott Mead1, Jeremy L. Humphris1, Warren Kaplan1, Marc D. Jones1, Emily K. Colvin1, Adnan Nagrial1, Emily S. Humphrey1, Angela Chou1, Angela Chou11, Venessa T. Chin1, Lorraine A. Chantrill1, Amanda Mawson1, Jaswinder S. Samra8, James G. Kench9, James G. Kench1, James G. Kench12, Jessica A. Lovell1, Roger J. Daly1, Neil D. Merrett3, Neil D. Merrett9, Christopher W. Toon1, Krishna Epari13, Nam Q. Nguyen14, Andrew Barbour4, Nikolajs Zeps15, Nipun Kakkar5, Fengmei Zhao5, Yuan Qing Wu5, Min Wang5, Donna M. Muzny5, William E. Fisher5, F. Charles Brunicardi16, Sally E. Hodges5, Jeffrey G. Reid5, Jennifer Drummond5, Kyle Chang5, Yi Han5, Lora Lewis5, Huyen Dinh5, Christian J. Buhay5, Timothy Beck6, Lee Timms6, Michelle Sam6, Kimberly Begley6, Andrew M.K. Brown6, Deepa Pai6, Ami Panchal6, Nicholas Buchner6, Richard de Borja6, Robert E. Denroche6, Christina K. Yung6, Stefano Serra17, Nicole Onetto6, Debabrata Mukhopadhyay18, Ming-Sound Tsao17, Patricia Shaw17, Gloria M. Petersen18, Steven Gallinger19, Steven Gallinger17, Ralph H. Hruban20, Anirban Maitra20, Christine A. Iacobuzio-Donahue20, Richard D. Schulick20, Christopher L. Wolfgang20, Richard A. Morgan20, Rita T. Lawlor, Paola Capelli21, Vincenzo Corbo, Maria Scardoni21, Giampaolo Tortora, Margaret A. Tempero22, Karen M. Mann23, Nancy A. Jenkins23, Pedro A. Perez-Mancera24, David J. Adams25, David A. Largaespada26, Lodewyk F. A. Wessels27, Alistair G. Rust25, Lincoln Stein6, David A. Tuveson24, Neal G. Copeland23, Elizabeth A. Musgrove1, Elizabeth A. Musgrove2, Aldo Scarpa21, James R. Eshleman20, Thomas J. Hudson6, Robert L. Sutherland2, Robert L. Sutherland1, David A. Wheeler5, John V. Pearson4, John Douglas Mcpherson6, Richard A. Gibbs5, Sean M. Grimmond4 
15 Nov 2012-Nature
TL;DR: It is found that frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, are also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement ofAxon guidance genes in pancreatic carcinogenesis.
Abstract: Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

1,752 citations

Journal ArticleDOI
25 Mar 1994-Cell
TL;DR: The results indicate that lpr and gld are mutations in Fas and Fasl, respectively, and suggest important roles of the Fas system in development of T cells as well as cytotoxic T lymphocyte-mediated cytotoxicity.

1,574 citations

Journal ArticleDOI
01 Nov 1996-Neuron
TL;DR: These studies provide compelling support for the view that one mechanism by which these mutant PS1 cause AD is by increasing the extracellular concentration of Abeta peptides terminating at 42(43), species that foster Abeta deposition.

1,552 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Mar 1998-Nature
TL;DR: Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis and the realization that these cells are a powerful tool for manipulating the immune system is realized.
Abstract: B and T lymphocytes are the mediators of immunity, but their function is under the control of dendritic cells. Dendritic cells in the periphery capture and process antigens, express lymphocyte co-stimulatory molecules, migrate to lymphoid organs and secrete cytokines to initiate immune responses. They not only activate lymphocytes, they also tolerize T cells to antigens that are innate to the body (self-antigens), thereby minimizing autoimmune reactions. Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis. With knowledge comes the realization that these cells are a powerful tool for manipulating the immune system.

14,532 citations

Journal ArticleDOI
TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Abstract: We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41–52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 × 10 5 distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices. The mRNA population specifies a cell’s identity and helps to govern its present and future activities. This has made transcriptome analysis a general phenotyping method, with expression microarrays of many kinds in routine use. Here we explore the possibility that transcriptome analysis, transcript discovery and transcript refinement can be done effectively in large and complex mammalian genomes by ultra-high-throughput sequencing. Expression microarrays are currently the most widely used methodology for transcriptome analysis, although some limitations persist. These include hybridization and cross-hybridization artifacts 1–3 , dye-based detection issues and design constraints that preclude or seriously limit the detection of RNA splice patterns and previously unmapped genes. These issues have made it difficult for standard array designs to provide full sequence comprehensiveness (coverage of all possible genes, including unknown ones, in large genomes) or transcriptome comprehensiveness (reliable detection of all RNAs of all prevalence classes, including the least abundant ones that are physiologically relevant). Other

12,293 citations

Journal ArticleDOI
TL;DR: A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib, and these mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor.
Abstract: BACKGROUND Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. METHODS We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells. RESULTS Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib. CONCLUSIONS A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib.

10,879 citations