scispace - formally typeset
Search or ask a question
Author

Nancy Kleckner

Bio: Nancy Kleckner is an academic researcher from Harvard University. The author has contributed to research in topics: Tn10 & Meiosis. The author has an hindex of 92, co-authored 217 publications receiving 34993 citations. Previous affiliations of Nancy Kleckner include Massachusetts Institute of Technology & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
15 Feb 2002-Science
TL;DR: Using the yeast Saccharomyces cerevisiae, this work could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis and found that chromatin is highly flexible throughout.
Abstract: We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.

3,465 citations

Journal ArticleDOI
07 Feb 1997-Cell
TL;DR: These findings strongly implicate Spo11 as the catalytic subunit of the meiotic DNA cleavage activity and provide direct evidence that the mechanism of meiotic recombination initiation is evolutionarily conserved.

1,727 citations

Journal ArticleDOI
01 Jan 1987-Gene
TL;DR: Several new vectors for the construction of operon and protein fusions to the Escherichia coli lacZ gene are described, improved in that they have very low levels of background lac gene expression, which makes possible the easy detection and accurate quantitation of very weak transcriptional and translational signals.

1,562 citations

Journal ArticleDOI
TL;DR: The current article reviews recent information on diverse aspects of chromosome morphogenesis, notably relationships between sisters, development of axial structure, and variations in chromatin status in an historical context.
Abstract: ▪ Abstract Meiotic chromosomes have been studied for many years, in part because of the fundamental life processes they represent, but also because meiosis involves the formation of homolog pairs, ...

1,206 citations

Journal ArticleDOI
01 May 1992-Cell
TL;DR: DMC1 phenotypes provide further evidence that recombination and SC formation are interrelated processes and are consistent with a requirement for DNA-DNA interactions during SC formation, and additional evidence suggests that arrest occurs at a meiosis-specific cell cycle "checkpoint" in response to a primary defect in prophase chromosome metabolism.

1,142 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
TL;DR: In this paper, a new vector strategy for the insertion of foreign genes into the genomes of gram negative bacteria not closely related to Escherichia coli was developed, which can utilize any gram negative bacterium as a recipient for conjugative DNA transfer.
Abstract: We have developed a new vector strategy for the insertion of foreign genes into the genomes of gram negative bacteria not closely related to Escherichia coli. The system consists of two components: special E. coli donor strains and derivatives of E. coli vector plasmids. The donor strains (called mobilizing strains) carry the transfer genes of the broad host range IncP–type plasmid RP4 integrated in their chromosomes. They can utilize any gram negative bacterium as a recipient for conjugative DNA transfer. The vector plasmids contain the P–type specific recognition site for mobilization (Mob site) and can be mobilized with high frequency from the donor strains. The mobilizable vectors are derived from the commonly used E. coli vectors pACYC184, pACYC177, and pBR325, and are unable to replicate in strains outside the enteric bacterial group. Therefore, they are widely applicable as transposon carrier replicons for random transposon insertion mutagenesis in any strain into which they can be mobilized but not stably maintained. The vectors are especially useful for site–directed transposon mutagenesis and for site–specific gene transfer in a wide variety of gram negative organisms.

7,278 citations

Journal ArticleDOI
09 Oct 2009-Science
TL;DR: Hi-C is described, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing and demonstrates the power of Hi-C to map the dynamic conformations of entire genomes.
Abstract: We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

7,180 citations

Journal ArticleDOI
TL;DR: A gene expression system based on bacteriophage T7 RNA polymerase has been developed and high levels of accumulation suggest that the RNAs are relatively stable, perhaps in part because their great length and/or stem-and-loop structures at their 3' ends help to protect them against exonucleolytic degradation.

6,415 citations