scispace - formally typeset
Search or ask a question
Author

Nanette H. Bishopric

Bio: Nanette H. Bishopric is an academic researcher from University of Miami. The author has contributed to research in topics: Myocyte & Muscle hypertrophy. The author has an hindex of 44, co-authored 109 publications receiving 7371 citations. Previous affiliations of Nanette H. Bishopric include United States Department of Veterans Affairs & University of California, San Francisco.


Papers
More filters
Journal ArticleDOI
TL;DR: The utility of this system as a test bed for genetic manipulation was demonstrated by infecting the CMPMs with a recombinant β‐galactosidase‐carrying adenovirus, and transduction efficiency increased from about 5% (MOI 0.1) to about 50% ( MOI 100).
Abstract: A method has been developed for culturing cardiac myocytes in a collagen matrix to produce a coherently contracting 3-dimensional model heart tissue that allows direct measurement of isometric contractile force. Embryonic chick cardiomyocytes were mixed with collagen solution and allowed to gel between two Velcro-coated glass tubes. During culture, the cardiomyocytes formed spontaneously beating cardiac myocyte-populated matrices (CMPMs) anchored at opposite ends to the Velcro-covered tubes through which they could be attached to a force measuring system. Immunohistochemistry and electron microscopy revealed a highly organized tissue-like structure of alpha-actin and alpha-tropomyosin-positive cardiac myocytes exhibiting typical cross-striation, sarcomeric myofilaments, intercalated discs, desmosomes, and tight junctions. Force measurements of paced or unpaced CMPMs were performed in organ baths after 6-11 days of cultivation and were stable for up to 24 h. Force increased with frequency between 0.8 and 2.0 Hz (positive "staircase"), increasing rest length (Starling mechanism), and increasing extracellular calcium. The utility of this system as a test bed for genetic manipulation was demonstrated by infecting the CMPMs with a recombinant beta-galactosidase-carrying adenovirus. Transduction efficiency increased from about 5% (MOI 0.1) to about 50% (MOI 100). CMPMs display more physiological characteristics of intact heart tissue than monolayer cultures. This approach, simpler and faster than generation of transgenic animals, should allow functional consequences of genetic or pharmacological manipulation of cardiomyocytes in vitro to be studied under highly controlled conditions.

597 citations

Journal ArticleDOI
TL;DR: iNOS expression occurs in failing human cardiac myocytes and may be involved in the pathophysiology of DCM, IHD, and VHD.
Abstract: Background There is increasing evidence that alterations in nitric oxide synthesis are of pathophysiological importance in heart failure. A number of studies have shown altered nitric oxide production by the endothelial constitutive isoform of nitric oxide synthase (NOS), but there is very little information on the role of the inducible isoform. Methods and Results We analyzed inducible NOS (iNOS) expression in ventricular myocardium taken from 11 control subjects (who had died suddenly from noncardiac causes), from 10 donor hearts before implantation, and from 51 patients with heart failure (24 with dilated cardiomyopathy [DCM], 17 with ischemic heart disease [IHD], and 10 with valvular heart disease [VHD]). Reverse transcription–polymerase chain reaction was used to confirm the presence of intact mRNA and to detect expression of iNOS and atrial natriuretic peptide (ANP). ANP was used as a molecular phenotypic marker of ventricular failure. iNOS was expressed in 36 of 51 biopsies (71%) from patients with...

471 citations

Journal ArticleDOI
TL;DR: It is reported that hypoxia-acidosis-associated cell death is mediated by BNIP3, a member of the Bcl-2 family of apoptosis-regulating proteins, and may figure significantly in muscle loss during myocardial ischemia.
Abstract: Coronary artery disease leads to injury and loss of myocardial tissue by deprivation of blood flow (ischemia) and is a major underlying cause of heart failure. Prolonged ischemia causes necrosis and apoptosis of cardiac myocytes and vascular cells; however, the mechanisms of ischemia-mediated cell death are poorly understood. Ischemia is associated with both hypoxia and acidosis due to increased glycolysis and lactic acid production. We recently reported that hypoxia does not induce cardiac myocyte apoptosis in the absence of acidosis. We now report that hypoxia-acidosis-associated cell death is mediated by BNIP3, a member of the Bcl-2 family of apoptosis-regulating proteins. Chronic hypoxia induced the expression and accumulation of BNIP3 mRNA and protein in cardiac myocytes, but acidosis was required to activate the death pathway. Acidosis stabilized BNIP3 protein and increased the association with mitochondria. Cell death by hypoxia-acidosis was blocked by pretreatment with antisense BNIP3 oligonucleotides. The pathway included extensive DNA fragmentation and opening of the mitochondrial permeability transition pore, but no apparent caspase activation. Overexpression of wild-type BNIP3, but not a translocation-defective mutant, activated cardiac myocyte death only when the myocytes were acidic. This pathway may figure significantly in muscle loss during myocardial ischemia.

439 citations

Journal ArticleDOI
TL;DR: It is reported that the HIF-1 binding site alone is not sufficient for the response to hypoxia but requires an additional 50 base pairs of flanking sequence that includes binding sites for the factors activator protein-1 (AP-1), GATA-2, and CAAT-binding factor (NF-1).

339 citations

Journal ArticleDOI
TL;DR: It is concluded that cytokine toxicity to neonatal cardiac myocytes results from the induction of NO and subsequent activation of apoptosis, at least in part through the generation of oxygen free radicals.
Abstract: -Cytokine-induced NO production depresses myocardial contractility and has been shown to be cytotoxic to cardiac myocytes. However, the mechanisms of cytokine-induced cardiac myocyte cell death are unclear. To analyze these mechanisms in detail, we treated neonatal cardiac myocytes in serum-free culture with a combination of the macrophage-derived cytokines interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma. These cytokines caused a time-dependent induction of cardiac myocyte apoptosis, but not necrosis, beginning 72 hours after treatment, as determined by nuclear morphology, DNA internucleosomal cleavage, and cleavage of poly(ADP-ribose) polymerase, reflecting caspase activation. Apoptosis was preceded by a >50-fold induction of inducible NO synthase mRNA and the release of large amounts (5 to 8 nmol/ microgram protein) of NO metabolites (NOx) into the medium. Cell death was completely blocked by an NO synthase inhibitor and attenuated by antioxidants (N-acetylcysteine and DTT) and the caspase inhibitor ZVAD-fmk. Cytokines also mediated an NO-dependent, sustained increase in myocyte expression of the Bcl-2 homologs Bak and Bcl-x(L). The NO donor S-nitrosoglutathione also induced apoptosis and cell levels of Bak, but not of Bcl-x(L). All effects of cytokines, including poly(ADP-ribose) polymerase cleavage, could be attributed to interleukin-1beta; interferon-gamma and tumor necrosis factor-alpha had no independent effects on apoptosis or on NOx production. We conclude that cytokine toxicity to neonatal cardiac myocytes results from the induction of NO and subsequent activation of apoptosis, at least in part through the generation of oxygen free radicals. The rate and extent of this apoptosis is modulated by alterations in the cellular balance of Bak and Bcl-x(L), which respond differentially to cytokine-induced and exogenous NO and by the availability of oxidant species.

276 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: Cells undergo a variety of biological responses when placed in hypoxic conditions, including activation of signalling pathways that regulate proliferation, angiogenesis and death, and many elements of the hypoxia-response pathway are good candidates for therapeutic targeting.
Abstract: Cells undergo a variety of biological responses when placed in hypoxic conditions, including activation of signalling pathways that regulate proliferation, angiogenesis and death. Cancer cells have adapted these pathways, allowing tumours to survive and even grow under hypoxic conditions, and tumour hypoxia is associated with poor prognosis and resistance to radiation therapy. Many elements of the hypoxia-response pathway are therefore good candidates for therapeutic targeting.

4,847 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed AMIOdarone versus implantable cardioverter-defibrillator (ICD-DV) for the treatment of atrial fibrillation.
Abstract: ACC : American College of Cardiology ACE : angiotensin-converting enzyme ACS : acute coronary syndrome AF : atrial fibrillation AGNES : Arrhythmia Genetics in the Netherlands AHA : American Heart Association AMIOVIRT : AMIOdarone Versus Implantable cardioverter-defibrillator:

2,830 citations