scispace - formally typeset
Search or ask a question
Author

Nanette S. Roche

Bio: Nanette S. Roche is an academic researcher from University of Texas System. The author has contributed to research in topics: Transforming growth factor & Growth factor. The author has an hindex of 9, co-authored 11 publications receiving 5345 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Further data are obtained to support a role for TGF-beta as an intrinsic mediator of collagen formation: conditioned media obtained from activated human tonsillar T lymphocytes contain greatly elevated levels of T GF-beta compared tomedia obtained from unactivated lymphocytes.
Abstract: Transforming growth factor type beta (TGF-beta), when injected subcutaneously in newborn mice, causes formation of granulation tissue (induction of angiogenesis and activation of fibroblasts to produce collagen) at the site of injection. These effects occur within 2-3 days at dose levels than 1 microgram. Parallel in vitro studies show that TGF-beta causes marked increase of either proline or leucine incorporation into collagen in either an NRK rat fibroblast cell line or early passage human dermal fibroblasts. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) do not cause these same in vivo and in vitro effects; in both rat and human fibroblast cultures, EGF antagonizes the effects of TGF-beta on collagen formation. We have obtained further data to support a role for TGF-beta as an intrinsic mediator of collagen formation: conditioned media obtained from activated human tonsillar T lymphocytes contain greatly elevated levels of TGF-beta compared to media obtained from unactivated lymphocytes. These activated media markedly stimulate proline incorporation into collagen in NRK cells; this effect is blocked by a specific antibody to TGF-beta. The data are all compatible with the hypothesis that TGF-beta is an important mediator of tissue repair.

2,860 citations

Journal ArticleDOI
TL;DR: The data indicate that the effects of TGF-beta on cells are not a function of the peptide itself, but rather of the total set of growth factors and their receptors that is operant in the cell at a given time.
Abstract: Type beta transforming growth factor (TGF-beta) is a two-chain polypeptide of 25,000 daltons isolated from many tissues, including bovine kidney, human placenta, and human platelets. It has been characterized by its ability to stimulate reversible transformation of nonneoplastic murine fibroblasts, as measured by the formation of colonies of these cells in soft agar (ED50 = 4 pM TGF-beta for NRK fibroblasts). We now show that the response of cells to TGF-beta is bifunctional, in that TGF-beta inhibits the anchorage-dependent growth of NRK fibroblasts and of human tumor cells by increasing cell cycle time. Moreover, the anchorage-independent growth of many human melanoma, lung carcinoma, and breast carcinoma cell lines is inhibited by TGF-beta at concentrations in the same range as those that stimulate colony formation of NRK fibroblasts (average ED50 = 10-30 pM TGF-beta for inhibition). Whereas epidermal growth factor and TGF-beta synergize to induce anchorage-independent growth of NRK fibroblasts, their effects on the growth of A-549 human lung carcinoma cells are antagonistic. The bifunctional response of cells to TGF-beta is further demonstrated in Fischer rat 3T3 fibroblasts transfected with a cellular myc gene. In these cells TGF-beta synergizes with platelet-derived growth factor to stimulate colony formation but inhibits the colony formation induced by epidermal growth factor. The data indicate that the effects of TGF-beta on cells are not a function of the peptide itself, but rather of the total set of growth factors and their receptors that is operant in the cell at a given time.

1,080 citations

Journal ArticleDOI
12 Feb 1988-Cell
TL;DR: Using DNA transfection, it is shown that TGF-beta stimulates the activity of the mouse alpha 2(l) collagen promoter 5- to 10-fold in mouse NIH 3T3 and rat osteosarcoma cells.

579 citations

Journal ArticleDOI
TL;DR: Steroids and retinoids have antagonistic effects on growth factors and collagen deposition in wound healing and these effects can be relevant for treatment options in a clinical setting.
Abstract: Hypothesis Anti-inflammatory corticosteroids significantly impair wound healing. Retinoids partially, but significantly, reverse this effect. Little is known about the mechanism of steroid retardation or retinoid reversal. We hypothesized that corticosteroids lower transforming growth factor-β (TGF-β) and insulin-like growth factor-I (IGF-I) levels and tissue deposition in wounds and that retinoids stimulate corticosteroid-impaired TGF-β and IGF-I release and collagen production. Design Randomized controlled trial. Setting Wound healing research laboratory. Participants Animal study. Interventions Four wire mesh wound cylinders were implanted subcutaneously into the backs of 72 male Sprague-Dawley rats. Wound healing was impaired by a single subcutaneous injection of 6 mg of methylprednisolone acetate (Depo-Medrol). Two preparations of retinoids were used in separate experiments: all- trans -retinoic acid and 9- cis -retinoic acid that were fed orally. Main Outcome Measures Hydroxyproline content was measured in the healing tissue and TGF-β and IGF-I levels were analyzed in the wound fluid. Results Methylprednisolone treatment significantly decreased TGF-β and IGF-I levels in the wound fluid and hydroxyproline content in the tissue ( P trans - and 9- cis -retinoic acid partially reversed the TGF-β and IGF-I decrease and significantly increased hydroxyproline content toward normal levels ( P trans -retinoic acid enhanced collagen deposition, TGF-β and IGF-I levels over normal chow fed control animals ( P Conclusions Steroids and retinoids have antagonistic effects on growth factors and collagen deposition in wound healing. These effects can be relevant for treatment options in a clinical setting.

296 citations

Journal ArticleDOI
TL;DR: The macro- and microscopic appearance of these mice, as well as their neonatal lethality, most likely result from inhibition of normal skin development and suppression of epithelial cell proliferation by the overexpression of transforming growth factor beta 1.
Abstract: To assess the effect of transforming growth factor beta 1 on the skin in vivo, we have targeted its expression to the epidermis of transgenic mice. To ensure that active TGF-beta 1 was expressed, we used a porcine TGF-beta 1 cDNA with mutations of Cys-223-->Ser and Cys-225-->Ser, which allow constitutive activation. Mice expressing the mutant transforming growth factor beta 1 transgene exhibited a marked phenotype at birth. The skin was very shiny and tautly stretched. These animals were rigid and appeared to be restricted in their ability to move and breathe; death occurred within 24 hr. Histologically, the most prominent features of the skin were a compact orthohyperkeratosis and a reduction in the number of hair follicles. Pulse-labeling studies with 5-bromodeoxyuridine demonstrated a marked reduction in the number of replicating cells in the epidermis and hair follicles. Thus, the macro- and microscopic appearance of these mice, as well as their neonatal lethality, most likely result from inhibition of normal skin development and suppression of epithelial cell proliferation by the overexpression of transforming growth factor beta 1.

260 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations

Journal ArticleDOI
08 Dec 1989-Science
TL;DR: DNA sequencing suggests the existence of several molecular species of VEGF, a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo.
Abstract: Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.

5,092 citations

Journal ArticleDOI
TL;DR: By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.

4,319 citations

Journal ArticleDOI
TL;DR: The four stages of orderly inflammation mediated by macrophages are discussed: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis.
Abstract: Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing Finally, we briefly discuss the characterization of macrophage heterogeneity in humans

4,182 citations

Journal ArticleDOI
TL;DR: It is clear that the understanding of the myofibroblast — its origins, functions and molecular regulation — will have a profound influence on the future effectiveness not only of tissue engineering but also of regenerative medicine generally.
Abstract: During the past 20 years, it has become generally accepted that the modulation of fibroblastic cells towards the myofibroblastic phenotype, with acquisition of specialized contractile features, is essential for connective-tissue remodelling during normal and pathological wound healing. Yet the myofibroblast still remains one of the most enigmatic of cells, not least owing to its transient appearance in association with connective-tissue injury and to the difficulties in establishing its role in the production of tissue contracture. It is clear that our understanding of the myofibroblast its origins, functions and molecular regulation will have a profound influence on the future effectiveness not only of tissue engineering but also of regenerative medicine generally.

3,836 citations