scispace - formally typeset
Search or ask a question
Author

Nanjappa Ashwath

Bio: Nanjappa Ashwath is an academic researcher from Central Queensland University. The author has contributed to research in topics: Biodiesel & Diesel fuel. The author has an hindex of 26, co-authored 114 publications receiving 3131 citations. Previous affiliations of Nanjappa Ashwath include United States Environmental Protection Agency & Texas A&M University.


Papers
More filters
Journal ArticleDOI
23 Nov 2012-Energies
TL;DR: More than two hundred publications have been reviewed, discussed and summarized, with the emphasis being placed on the current status of pyrolysis technology and its potential for commercial applications for bio-fuel production as mentioned in this paper.
Abstract: There has been an enormous amount of research in recent years in the area of thermo-chemical conversion of biomass into bio-fuels (bio-oil, bio-char and bio-gas) through pyrolysis technology due to its several socio-economic advantages as well as the fact it is an efficient conversion method compared to other thermo-chemical conversion technologies. However, this technology is not yet fully developed with respect to its commercial applications. In this study, more than two hundred publications are reviewed, discussed and summarized, with the emphasis being placed on the current status of pyrolysis technology and its potential for commercial applications for bio-fuel production. Aspects of pyrolysis technology such as pyrolysis principles, biomass sources and characteristics, types of pyrolysis, pyrolysis reactor design, pyrolysis products and their characteristics and economics of bio-fuel production are presented. It is found from this study that conversion of biomass to bio-fuel has to overcome challenges such as understanding the trade-off between the size of the pyrolysis plant and feedstock, improvement of the reliability of pyrolysis reactors and processes to become viable for commercial applications. Further study is required to achieve a better understanding of the economics of biomass pyrolysis for bio-fuel production, as well as resolving issues related to the capabilities of this technology in practical application.

1,020 citations

Journal ArticleDOI
TL;DR: In response to Cd toxicity, plants have developed protective cellular mechanisms such as synthesis of phytochelatins and metallothioneins, metal compartmentalization in vacuoles, and increased activity of antioxidant enzymes to neutralize Cd-induced toxicity as mentioned in this paper.
Abstract: Cadmium (Cd) is an inorganic mineral in the earth's crust. Cadmium entry into the environment occurs through geogenic and anthropogenic sources. Industrial activities including mining, electroplating, iron and steel plants, and battery production employ Cd during their processes and often release Cd into the environment. When disseminated into soil, Cd can be detrimental to agro-ecosystems because it is relatively mobile and phytotoxic even at low concentrations. Cadmium's phytotoxicity is due to reductions in the rate of transpiration and photosynthesis and chlorophyll concentration resulting in retardation of plant growth, and an alteration in the nutrient concentration in roots and leaves. In response to Cd toxicity, plants have developed protective cellular mechanisms such as synthesis of phytochelatins and metallothioneins, metal compartmentalization in vacuoles, and the increased activity of antioxidant enzymes to neutralize Cd-induced toxicity. While these direct protective mechanisms can help alle...

263 citations

Journal ArticleDOI
TL;DR: The 2nd generation biodiesel can be considered as a promising alternative because of its feedstocks, such as non-edible vegetable oils, animal fats and waste cooking oils are cheaper in most of the countries in the world than the 1st generation feedstocks which are produced from edible-vegetable oils.
Abstract: The transport sector, which heavily depends on oil-derived liquid products such as gasoline and diesel, globally occupies the 3rd place when total energy consumption and greenhouse gas (GHG) emissions are considered (after the industry and the building sectors). This consumption level is predicted to increase by 60% by 2030 mainly because of population growth, industrialization and exposure to better living standards. Biodiesel is one of the sustainable sources of energy for meeting increasing global transport energy demand and reducing GHG emissions significantly. The use of non-edible plant oils is very significant because it can be grown in harsh and marginal lands which require less maintenance, less soil fertility and less water as opposed to arable lands for growing edible vegetable oils. However, it is noted that the 2nd generation feedstocks can also be grown in arable lands, but this is not a general practice and is not recommended. The 2nd generation biodiesel can be considered as a promising alternative because of its feedstocks, such as non-edible vegetable oils, animal fats and waste cooking oils are cheaper in most of the countries in the world than the 1st generation feedstocks which are produced from edible-vegetable oils (food crops). Furthermore, the price of biodiesel depends on the cost of feedstocks which makes up 70–95% of the total production costs. However, extraction of non-edible oils as well as conversion process of oil into biodiesel should be well scrutinized. This paper extensively reviews on the selection of 2nd generation biodiesel feedstocks, oil extraction as well as biodiesel conversion techniques with the aim to identify the most appropriate and cost-effective feedstocks, identify the most suitable oil extraction technique and most efficient technology for producing of the 2nd generation biodiesel which will substitute the current dependence on the fossil fuel worldwide. This paper will contribute to greater understanding of the recent development and prospects of 2nd generation biodiesel as a sustainable transport fuel.

216 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of biodiesel on engine power, fuel economy and emissions including regulated and non-regulated, and corresponding effect factors are surveyed and analysed in detail, and a potential guideline on further research for improving engine performance and emission characteristics using different 2nd generation biodiesels and their blends.
Abstract: Increased global warming and declining fossil fuel reserves have stimulated the researchers to look for new sources of fuel, which should be renewable, locally available and environmentally benign. Biodiesel has been receiving increasing attention because of the relevance it gains from the rising petroleum price and its environmental advantages. This paper reviews and highlights several aspects of non-edible oils which are termed as 2nd generation biodiesel, such as the biodiesel’s physico-chemical properties, and its effect on engine performances and emissions. In addition, the effect of biodiesel on engine power, fuel economy and emissions including regulated and non-regulated, and the corresponding effect factors are surveyed and analysed in detail. It is found from the review that the biodiesel fuel properties vary depending on the sources of feedstocks which have considerable impact on engine performances and emissions characteristics. The use of biodiesel leads to the substantial reduction in key pollutants namely particulate matter (PM), hydrocarbon (HC), and carbon monoxide (CO) emissions accompanying with the imperceptible power loss, slight increase in fuel consumption and slight increase in NOx emission on conventional diesel engines with no or fewer modification. This review introduces a potential guideline on further research for improving engine performance and emission characteristics using different 2nd generation biodiesels and their blends. The study provides a comparative baseline to make an easy comparison among the biodiesels in respect of fuel properties, engine performance and emission features.

139 citations

Journal ArticleDOI
TL;DR: The advances made in various aspects of tissue culture in tomato are reviewed and the issues that still need to be addressed to utilise the full potential of plant tissue culture techniques in genetic improvement and mass propagation of tomato are discussed.
Abstract: Tomato is a major vegetable crop that has achieved tremendous popularity over the last century. It is grown in almost every country of the world. Development of protocols for in vitro selection can provide new advances for the production of stress tolerant cultivars. Techniques have been optimised for the production of haploids and somatic hybrids. Attempts have also been made to transfer the higher regenerative ability of wild varieties to cultivated tomatoes. Although, some information is available on the morphogenesis of tomato, the techniques have not been developed to a level at which they can be utilised in large-scale multiplication of commercially important cultivars. The morphogenesis response seems to be highly dependent PGRs used in the media, which is again cultivar and genotypic specific. Somatic embryogenesis in tomato is still at its infancy, and efficient procedures for large-scale production via somatic embryogenesis are yet to be developed. Genetic stability of the tissue culture raised tomato plants also needs to be addressed. The use of a combination of molecular and conventional breeding techniques could be the option for the development of cultivars resistant to biotic and abiotic stresses. This paper reviews the advances made in various aspects of tissue culture in tomato. It also discusses the issues that still need to be addressed to utilise the full potential of plant tissue culture techniques in genetic improvement and mass propagation of tomato.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed review has been conducted to highlight different related aspects to the biodiesel industry, including, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodies, the economical viability and finally the future of the future biodiesel.
Abstract: As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available resources that have come to the forefront recently. In this paper, a detailed review has been conducted to highlight different related aspects to biodiesel industry. These aspects include, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodiesel, the economical viability and finally the future of biodiesel. The literature reviewed was selective and critical. Highly rated journals in scientific indexes were the preferred choice, although other non-indexed publications, such as Scientific Research and Essays or some internal reports from highly reputed organizations such as International Energy Agency (IEA), Energy Information Administration (EIA) and British Petroleum (BP) have also been cited. Based on the overview presented, it is clear that the search for beneficial biodiesel sources should focus on feedstocks that do not compete with food crops, do not lead to land-clearing and provide greenhouse-gas reductions. These feedstocks include non-edible oils such as Jatropha curcas and Calophyllum inophyllum , and more recently microalgae and genetically engineered plants such as poplar and switchgrass have emerged to be very promising feedstocks for biodiesel production. It has been found that feedstock alone represents more than 75% of the overall biodiesel production cost. Therefore, selecting the best feedstock is vital to ensure low production cost. It has also been found that the continuity in transesterification process is another choice to minimize the production cost. Biodiesel is currently not economically feasible, and more research and technological development are needed. Thus supporting policies are important to promote biodiesel research and make their prices competitive with other conventional sources of energy. Currently, biodiesel can be more effective if used as a complement to other energy sources.

1,496 citations

Journal ArticleDOI
TL;DR: In this paper, a general summary of the properties of pyrolytic products and their analysis methods is given, as well as a review of the parameters that affect the process and a summary of current state of the art.
Abstract: Pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. Depending on the heating rate and residence time, biomass pyrolysis can be divided into three main categories slow (conventional), fast and flash pyrolysis mainly aiming at maximising either the bio-oil or biochar yields. Synthesis gas or hydrogen-rich gas can also be the target of biomass pyrolysis. Maximised gas rates can be achieved through the catalytic pyrolysis process, which is now increasingly being developed. Biomass pyrolysis generally follows a three-step mechanism comprising of dehydration, primary and secondary reactions. Dehydrogenation, depolymerisation, and fragmentation are the main competitive reactions during the primary decomposition of biomass. A number of parameters affect the biomass pyrolysis process, yields and properties of products. These include the biomass type, biomass pretreatment (physical, chemical, and biological), reaction atmosphere, temperature, heating rate and vapour residence time. This manuscript gives a general summary of the properties of the pyrolytic products and their analysis methods. Also provided are a review of the parameters that affect biomass pyrolysis and a summary of the state of industrial pyrolysis technologies.

1,379 citations

Book
01 Dec 1988
TL;DR: In this paper, the basic processes in Atomization are discussed, and the drop size distributions of sprays are discussed.Preface 1.General Considerations 2.Basic Processes of Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.AtOMizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index
Abstract: Preface 1.General Considerations 2.Basic Processes in Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.Atomizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index

1,214 citations

Journal ArticleDOI
TL;DR: A case study of Western Australian plants revealed that plants with specialised nutritional modes such as carnivory, cluster roots, or EM were much more diverse in this ancient landscape with infertile soils than elsewhere.
Abstract: A comprehensive appraisal of the mycorrhizal literature provides data for 336 plant families representing 99% of flowering plants, with regard to mycorrhizas and other nutritional adaptations. In total, arbuscular (AM), orchid, ectomycorrhizas (EM) and ericoid mycorrhizas and nonmycorrhizal (NM) roots occur in 74%, 9%, 2%, 1% and 6% of Angiosperm species respectively. Many families of NM plants have alternative nutritional strategies such as parasitism, carnivory, or cluster roots. The remaining angiosperms (8%) belong to families reported to have both AM and NM species. These are designated as NM-AM families here and tend to occur in habitats considered non-conducive to mycorrhizal fungi, such as epiphytic, aquatic, extremely cold, dry, disturbed, or saline habitats. Estimated numbers of species in each category of mycorrhizas is presented with lists of NM and EM families. Evolutionary trends are also summarised by providing data on all clades and orders of flowering and non-flowering vascular plants on a global scale. A case study of Western Australian plants revealed that plants with specialised nutritional modes such as carnivory, cluster roots, or EM were much more diverse in this ancient landscape with infertile soils than elsewhere. Detailed information on the mycorrhizal diversity of plants presented here is linked to a website (mycorrhizas.info) to allow data to remain current. Over a century of research effort has resulted in data on mycorrhizal associations of >10,000 plant species that are of great value, but also somewhat of a liability due to conflicting information about some families and genera. It is likely that these conflicts result in part from misdiagnosis of mycorrhizal associations resulting from a lack of standardisation in criteria used to define them. Families that contain both NM and AM species provide a second major source of inconsistency, but even when these are excluded there is a ∼10% apparent error rate in published lists of mycorrhizal plants. Arbuscules are linked to AM misdiagnosis since they are used less often than vesicles to recognise AM associations in roots and apparently occur sporadically in NM plants. Key issues with the diagnosis of mycorrhizal plants are discussed using the Cyperaceae as a case study. Detailed protocols designed to consistently distinguish AM from endophytic Glomeromycotan Fungus Colonisation (GFC) are provided. This review aims to stimulate debate and provide advice to researchers delving into root biology.

1,114 citations

Journal ArticleDOI
TL;DR: This review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.
Abstract: The contamination of soils and water with metals has created a major environmental problem, leading to considerable losses in plant productivity and hazardous health effects. Exposure to toxic metals can intensify the production of reactive oxygen species (ROS), which are continuously produced in both unstressed and stressed plants cells. Some of the ROS species are highly toxic and must be detoxified by cellular stress responses, if the plant is to survive and grow. The aim of this review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.

1,065 citations