scispace - formally typeset
Search or ask a question
Author

Naoki Furuta

Bio: Naoki Furuta is an academic researcher from Chuo University. The author has contributed to research in topics: Inductively coupled plasma & Inductively coupled plasma mass spectrometry. The author has an hindex of 27, co-authored 93 publications receiving 2326 citations. Previous affiliations of Naoki Furuta include Indiana University & National Institute for Environmental Studies.


Papers
More filters
Journal ArticleDOI
TL;DR: Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 4001C, and the number concentration of the abrasion dust and their aerodynamic diameters (Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution as discussed by the authors.

256 citations

Journal ArticleDOI
TL;DR: In this article, airborne particulte matter was collected at urban sites in six Asian countries (Japan, Korea, China, Thailand, Sri Lanka, and Indonesia), and the stable lead isotope ratios were measured.
Abstract: Airborne particulte matter was collected at urban sites in six Asian countries (Japan, Korea, China, Thailand, Sri Lanka, and Indonesia), and the stable lead isotope ratios were measured. Some source-related materials, such as coal and leaded gasoline, were also analyzed and compared to the ratios observed in airborne lead. Airborne lead isotope ratios differed considerably from each other, and these differences corresponded to differences in the regional source of lead. Leaded gasoline was still the primary source of lead in some cities in Asia, and the lead isotope ratios were strongly influenced by those of leaded gasoline

246 citations

Journal ArticleDOI
TL;DR: Abrasion tests were conducted using a brake dynamometer to determine the antimony (Sb) emission factor originating from automobiles to contribute to the modeling of atmospheric Sb concentration alongside roadways and also to the better understanding of Sb source apportionment.
Abstract: Abrasion tests were conducted using a brake dynamometer to determine the antimony (Sb) emission factor originating from automobiles. Abrasion dusts from commercially available brake pads (nonasbestos organic type) were emitted into an enclosed chamber under various braking conditions in terms of initial driving speed and deceleration. Suspended dusts inside the chamber were collected on a quartz fiber filter and weighed. From the experimental data, dust emission could be regressed as a function of the initial kinetic energy loading and the braking time. Using the regression function, the emission factors of brake abrasion dusts under the typical braking conditions (initial driving speed; 50 km/h, deceleration; 1.0 m/s2) were calculated as 5.8 mg/braking/car for PM10 and 3.9 mg/braking/car for PM2.5. The elemental composition of the collected dusts indicated that the fraction originating from disk wear contributed to approximately 30% of the suspended dusts. From these analytical results, it was concluded that the Sb emission factors originating from automobiles were approximately 32 microg Sb/braking/car for PM10 and 22 microg Sb/ braking/car for PM2.5. These essential data will contribute to the modeling of atmospheric Sb concentration alongside roadways and also to the better understanding of Sb source apportionment.

149 citations

Journal ArticleDOI
Naoki Furuta1, Akihiro Iijima1, Akiko Kambe1, Kazuhiro Sakai1, Keiichi Sato1 
TL;DR: It was observed that the APM concentration was higher between the winter and the spring, compared to during the summer, and it was concluded that the source of Sb in squared APM <2 microm is considered to be from brake pad wear.
Abstract: APM was collected and trace elements existing in the particles were monitored since May 1995 in this study. APM sample was collected separately by size (d 11 μm) on the roof of the university building (45 m above ground) in the campus of Faculty of Science and Engineering, Chuo University, Tokyo, Japan, using an Anderson low volume air sampler. The collected sample was digested by HNO3, H2O2 and HF using a microwave oven, and major elements (Na, Mg, Al, K, Ca and Fe) were measured by ICP-AES, and trace elements (Li, Be, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba and Pb) were measured by ICP-MS. It was observed that the APM concentration was higher between the winter and the spring, compared to during the summer. The enrichment factor was calculated for each element in each set of APM (d 11 μm). Seasonal trends of enrichment factors were examined, and the elements were classified into 3 groups according to the common seasonal behavior. It is likely that the elements in the same group have common origins. Toxic pollutant elements (Sb, Se, Cd, Pb and As) were found in small particles with d of 11 μm) was classified by the shape, and the shape-dependent constituents of a single APM particle were quantitatively measured by SEM-EDX. High concentration of Sb was found in APM <2 μm and square particles. Particles less than 2 μm and square shaped particles were major particles produced by actual car braking experiments. From these experimental results it was concluded that the source of Sb in squared APM <2 μm is considered to be from brake pad wear.

134 citations

Journal ArticleDOI
TL;DR: In this paper, a HPLC-ICP-MS analytical method for the speciation of Sb compounds with citric acid was developed by using the observed complexation effect, which enabled the most toxic Sb specie, Sb(III), in an airborne particulate matter (APM) sample for the first time.
Abstract: In this work, a complexation effect of Sb compounds with citric acid was observed using electrospray mass spectrometry (ES-MS). It was found that both Sb(III) and Sb(V) could form complexes readily with citric acid in an aqueous solution at room temperature. These complexes were found to be very stable in various matrices (moat water and aqueous extracts of airborne particulate matter), therefore, a novel HPLC-ICP-MS analytical method for the speciation of Sb(III) and Sb(V) in environmental samples was developed by using the observed complexation effect. Sb(III)- and Sb(V)-citrate complexes were separated on a PRP-X100 anion-exchange column with 10 mmol l−1 EDTA–1 mmol l−1 phthalic acid (pH 4.5) as a mobile phase. All complexes were retained on the separation column, and none of them eluted in the solvent front. Low detection limits of 0.05 µg l−1 and 0.07 µg l−1 were achieved for Sb(III) and Sb(V), respectively. The calibration curves were linear over the range of 1.0–250 µg l−1 for the investigated Sb species. The precisions, evaluated by using the relative standard deviation (%RSD) with a 2 µg l−1 standard solution, were 1.8% and 3.3% for Sb(III) and Sb(V), respectively. Several advantages of the developed method, such as improving chromatographic separation, stabilizing Sb compounds in a water sample, and preventing Sb(III) from oxidizing to Sb(V) during the ultrasonic-assisted and microwave-assisted extraction of an airborne particulate matter (APM) sample using 26 mmol l−1 citric acid as an extraction solvent, and alleviating the adsorption of Sb compounds on the sample surface, were observed. The developed method enabled us to detect the most toxic Sb specie, Sb(III), in an APM sample for the first time.

96 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: It is concluded that with the exception of brake dust particles which may be identified from their copper (Cu) and antimony (Sb) content, unequivocal identification of particles from other sources is likely to prove extremely difficult, either because of the lack of suitable tracer elements or compounds, or of the interactions between sources prior to the emission process.

1,290 citations

Journal ArticleDOI
TL;DR: In this paper, a procedure for the analysis of Cu and Zn isotope compositions by plasma-source mass spectrometry (Plasma 54) together with a method to purify Cu and zn from natural samples of silicates, ores, sediments, and biological material is presented.

1,126 citations

Journal Article
TL;DR: This work found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb, and screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants.
Abstract: In addition to the often-cited advantages of using Arabidopsis thaliana as a model system in plant biological research (1), Arabidopsis has many additional characteristics that make it an attractive experimental organism for studying lea d (Pb) accumulation and tolerance in plants. These include its fortuitous familial relationship to many known metal hyperaccumulators (Brassicaceae), as well as similar Pbaccumulation patterns to most other plants. Using nutrient-agar plates, hydroponic culture, and Pb-contaminated soils as growth media, we found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb. In addition, we have found that Pb accumulation is not obligatorily linked with Pb tolerance, suggesti ng that different genetic factors control these two processes. We also screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants. Current characterization of these mutants indicates that their phenotypes are likely due to alteration of general metal ion uptake or translocation processes since these mutants also accumulate many other metals in shoots. We expect that further characterization of the ecotypes and mutants will shed light on the basic genetic and physiological underpinnings of plant-based Pb remediation. 7. Aromatic nitroreduction of acifluorfen in soils, rhizospheres, and pure cultures of rhizobacteria. Zablotowicz, R. M., Locke, M. A., and Hoagland, R. E. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 38-53. NAL Call #: QD1.A45-no.664 Abstract: Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under phytoremediation management. 8. Ascorbate: a biomarker of herbicide stress in wetland plants. Lytle, T. F. and Lytle, J. S. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 106-113. NAL Call #: QD1.A45-no.664 Abstract: In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. 9. Atmospheric nitrogenous compounds and ozone--is NO(x) fixation by plants a possible solution. Wellburn, A. R. New phytol. 139: 1 pp. 5-9. (May 1998). NAL Call #: 450-N42 Descriptors: ozoneair-pollution nitrogen-dioxide nitric-oxide air-quality tolerancebioremediationacclimatizationnutrient-sources nutrient-uptake plantscultivarsgenetic-variation literature-reviews 10. Atrazine degradation in pesticide-contaminated soils: phytoremediation potential. Kruger, E. L., Anhalt, J. C., Sorenson, D., Nelson, B., Chouhy, A. L., Anderson, T. A., and Coats, J. R. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 54-64. NAL Call #: QD1.A45-no. 664 Abstract: Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged atrazine in soil, with significantly less atrazine extractable from Kochia-vegetated soils than from nonvegetated soils. 11. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Siciliano, S. D. and Germida, J. J. Environ toxicol chem. 16: 6 pp. 1098-1104. (June 1997). NAL Call #: QH545.A1E58 Descriptors: polluted-soils bioremediationAbstract: Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 isolates), plants (16 forage grasses), and plant-bacteria associations (selected pairings) to remediate 2-chlorobenzoic acid (2CBA)-contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated wi th 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated (816 mg/kg) soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germ ination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginos

1,049 citations

Journal ArticleDOI
06 Mar 2000-Talanta
TL;DR: Is a simple and reliable method for the dissolution of granite and the determination of 38 elements by inductively coupled plasma mass spectrometry, and the recoveries for most of these elements in granite ranged from 90 to 110%.

994 citations