scispace - formally typeset
Search or ask a question
Author

Naomi E. Allen

Other affiliations: Utrecht University, Cancer Research UK, University of Sheffield  ...read more
Bio: Naomi E. Allen is an academic researcher from University of Oxford. The author has contributed to research in topics: European Prospective Investigation into Cancer and Nutrition & Cancer. The author has an hindex of 101, co-authored 364 publications receiving 37057 citations. Previous affiliations of Naomi E. Allen include Utrecht University & Cancer Research UK.


Papers
More filters
Journal ArticleDOI
TL;DR: The UK Biobank is described, a large population-based prospective study, established to allow investigation of the genetic and non-genetic determinants of the diseases of middle and old age.
Abstract: Cathie Sudlow and colleagues describe the UK Biobank, a large population-based prospective study, established to allow investigation of the genetic and non-genetic determinants of the diseases of middle and old age.

6,114 citations

Journal ArticleDOI
11 Oct 2018-Nature
TL;DR: Deep phenotype and genome-wide genetic data from 500,000 individuals from the UK Biobank is described, describing population structure and relatedness in the cohort, and imputation to increase the number of testable variants to 96 million.
Abstract: The UK Biobank project is a prospective cohort study with deep genetic and phenotypic data collected on approximately 500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment. The open resource is unique in its size and scope. A rich variety of phenotypic and health-related information is available on each participant, including biological measurements, lifestyle indicators, biomarkers in blood and urine, and imaging of the body and brain. Follow-up information is provided by linking health and medical records. Genome-wide genotype data have been collected on all participants, providing many opportunities for the discovery of new genetic associations and the genetic bases of complex traits. Here we describe the centralized analysis of the genetic data, including genotype quality, properties of population structure and relatedness of the genetic data, and efficient phasing and genotype imputation that increases the number of testable variants to around 96 million. Classical allelic variation at 11 human leukocyte antigen genes was imputed, resulting in the recovery of signals with known associations between human leukocyte antigen alleles and many diseases.

4,489 citations

Journal ArticleDOI
TL;DR: UK Biobank is not representative of the sampling population; there is evidence of a “healthy volunteer” selection bias; valid assessment of exposure-disease relationships may be widely generalizable and does not require participants to be Representative of the population at large.
Abstract: The UK Biobank cohort is a population-based cohort of 500,000 participants recruited in the United Kingdom (UK) between 2006 and 2010. Approximately 9.2 million individuals aged 40-69 years who lived within 25 miles (40 km) of one of 22 assessment centers in England, Wales, and Scotland were invited to enter the cohort, and 5.5% participated in the baseline assessment. The representativeness of the UK Biobank cohort was investigated by comparing demographic characteristics between nonresponders and responders. Sociodemographic, physical, lifestyle, and health-related characteristics of the cohort were compared with nationally representative data sources. UK Biobank participants were more likely to be older, to be female, and to live in less socioeconomically deprived areas than nonparticipants. Compared with the general population, participants were less likely to be obese, to smoke, and to drink alcohol on a daily basis and had fewer self-reported health conditions. At age 70-74 years, rates of all-cause mortality and total cancer incidence were 46.2% and 11.8% lower, respectively, in men and 55.5% and 18.1% lower, respectively, in women than in the general population of the same age. UK Biobank is not representative of the sampling population; there is evidence of a "healthy volunteer" selection bias. Nonetheless, valid assessment of exposure-disease relationships may be widely generalizable and does not require participants to be representative of the population at large.

1,896 citations

Journal ArticleDOI
TL;DR: Serious associations were found between the risk of prostate cancer and serum concentrations of testosterone, calculated free testosterone, dihydrotestosterone, dehydroepiandrosterone sulfate, androstenedione, androstanediol glucuronide, estradiol, or calculated freeEstradiol.
Abstract: incident prostate cancer and 6438 control subjects were pooled by the Endogenous Hormones and Prostate Cancer Collaborative Group. Relative risks (RRs) of prostate cancer by fifths of serum hormone concentration were estimated by use of conditional logistic regression with stratification by study, age at recruitment, and year of recruitment. All statistical tests were two-sided. Results No associations were found between the risk of prostate cancer and serum concentrations of testosterone, calculated free testosterone, dihydrotestosterone, dehydroepiandrosterone sulfate, androstenedione, androstanediol glucuronide, estradiol, or calculated free estradiol. The serum concentration of sex hormone – binding globulin was modestly inversely associated with prostate cancer risk (RR in the highest vs lowest fifth = 0.86, 95% confidence interval = 0.75 to 0.98; P trend = .01). There was no statistical evidence of heterogeneity among studies, and adjustment for potential confounders made little difference to the risk estimates. Conclusions In this collaborative analysis of the worldwide data on endogenous hormones and prostate cancer risk, serum concentrations of sex hormones were not associated with the risk of prostate cancer. J Natl Cancer Inst 2008;100: 170 – 183

662 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls.
Abstract: There is strong evidence of brain-related abnormalities in COVID-191-13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up.

660 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Abstract: The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.

52,293 citations

Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations

Book ChapterDOI
01 Jan 2010

5,842 citations

Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

5,668 citations