scispace - formally typeset
Search or ask a question
Author

Naoufal Lakhssassi

Other affiliations: University of Málaga
Bio: Naoufal Lakhssassi is an academic researcher from Southern Illinois University Carbondale. The author has contributed to research in topics: Gene & Soybean cyst nematode. The author has an hindex of 13, co-authored 39 publications receiving 1129 citations. Previous affiliations of Naoufal Lakhssassi include University of Málaga.

Papers
More filters
Journal ArticleDOI
22 Sep 2017
TL;DR: There are concerns about using synthetic phenolic antioxidants as food additives because of the reported negative effects on human health, so a replacement of these synthetics by antioxidant extractions from various foods has been proposed.
Abstract: There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed.

942 citations

Journal ArticleDOI
TL;DR: This review focuses on the diverse effects and efficacy of herbal compounds in controlling the development of MDR in microbes and hopes to inspire research into unexplored plants with a view to identify novel antibiotics for global health benefits.
Abstract: The war on multidrug resistance (MDR) has resulted in the greatest loss to the world’s economy. Antibiotics, the bedrock, and wonder drug of the 20th century have played a central role in treating infectious diseases. However, the inappropriate, irregular, and irrational uses of antibiotics have resulted in the emergence of antimicrobial resistance. This has resulted in an increased interest in medicinal plants since 30–50% of current pharmaceuticals and nutraceuticals are plant-derived. The question we address in this review is whether plants, which produce a rich diversity of secondary metabolites, may provide novel antibiotics to tackle MDR microbes and novel chemosensitizers to reclaim currently used antibiotics that have been rendered ineffective by the MDR microbes. Plants synthesize secondary metabolites and phytochemicals and have great potential to act as therapeutics. The main focus of this mini-review is to highlight the potential benefits of plant derived multiple compounds and the importance of phytochemicals for the development of biocompatible therapeutics. In addition, this review focuses on the diverse effects and efficacy of herbal compounds in controlling the development of MDR in microbes and hopes to inspire research into unexplored plants with a view to identify novel antibiotics for global health benefits.

301 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the rhg1-a Peking-type GmSNAP18 is sufficient for resistance to SCN in combination with Rhg4, and is an example of a pathogen resistance gene that has evolved to underlie two types of resistance, yet ensure the same function within a single plant species.
Abstract: Two types of resistant soybean (Glycine max (L.) Merr.) sources are widely used against soybean cyst nematode (SCN, Heterodera glycines Ichinohe). These include Peking-type soybean, whose resistance requires both the rhg1-a and Rhg4 alleles, and PI 88788-type soybean, whose resistance requires only the rhg1-b allele. Multiple copy number of PI 88788-type GmSNAP18, GmAAT, and GmWI12 in one genomic segment simultaneously contribute to rhg1-b resistance. Using an integrated set of genetic and genomic approaches, we demonstrate that the rhg1-a Peking-type GmSNAP18 is sufficient for resistance to SCN in combination with Rhg4. The two SNAPs (soluble NSF attachment proteins) differ by only five amino acids. Our findings suggest that Peking-type GmSNAP18 is performing a different role in SCN resistance than PI 88788-type GmSNAP18. As such, this is an example of a pathogen resistance gene that has evolved to underlie two types of resistance, yet ensure the same function within a single plant species.

87 citations

Journal ArticleDOI
TL;DR: This work discusses alternative solutions to the limitations of gel-based TILLING in functional genomics due to high copy number and multiple paralogs of the FAD2 gene family in soybean.
Abstract: Soybean seed oil typically contains 18-20% oleic acid. Increasing the content of oleic acid is beneficial for health and biodiesel production. Mutations in FAD2-1 genes have been reported to increase seed oleic acid content. A subset of 1,037 mutant families from a mutagenized soybean cultivar (cv.) Forrest population was screened using reverse genetics (TILLING) to identify mutations within FAD2 genes. Although no fad2 mutants were identified using gel-based TILLING, four fad2-1A and one fad2-1B mutants were identified using forward genetic screening and subsequent target sequencing. TILLING has been successfully used as a nontransgenic reverse genetic approach to identify mutations in genes controlling important agronomic traits. However, this technique presents limitations in traits such as oil composition due to gene copy number and similarities within the soybean genome. In soybean, FAD2 are present as two copies, FAD2-1 and FAD2-2. Two FAD2-1 members: FAD2-1A and FAD2-1B; and three FAD2-2 members: FAD2-2A, FAD2-2B, and FAD2-2C have been reported. Syntenic, phylogenetic, and in silico analysis revealed two additional members constituting the FAD2 gene family: GmFAD2-2D and GmFAD2-2E, located on chromosomes 09 and 15, respectively. They are presumed to have diverged from other FAD2-2 members localized on chromosomes 19 (GmFAD2-2A and GmFAD2-2B) and 03 (GmFAD2-2C). This work discusses alternative solutions to the limitations of gel-based TILLING in functional genomics due to high copy number and multiple paralogs of the FAD2 gene family in soybean.

62 citations

Journal ArticleDOI
TL;DR: This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype‐compatibility, CNV, promoter variation and its impact on broad‐based disease resistance in plants.
Abstract: Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.

53 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: This 11th edition of the book Modern Nutrition in Health and Disease, featuring the work of more than 190 expert authors and divided into five parts, fully explains and encapsulates the fundamentals of nutrition and its role in contemporary society.
Abstract: This 11th edition of the book Modern Nutrition in Health and Disease, featuring the work of more than 190 expert authors and divided into five parts, fully explains and encapsulates the fundamentals of nutrition and its role in contemporary society, from mastering the basic science of nutrient metabolism and function to applying nutritional concepts to combat human disease. Part I comprehensively covers specific dietary components, including major dietary constituents, minerals, vitamins and other Other CABI sites 

1,105 citations

Journal ArticleDOI
22 Sep 2017
TL;DR: There are concerns about using synthetic phenolic antioxidants as food additives because of the reported negative effects on human health, so a replacement of these synthetics by antioxidant extractions from various foods has been proposed.
Abstract: There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed.

942 citations

Journal ArticleDOI
TL;DR: Recent progress toward understanding theBR pathway is summarized, including BR perception and the molecular mechanisms of BR signaling, and how knowledge of the BR pathway is being applied to manipulate the growth and stress responses of crops is shown.
Abstract: Brassinosteroids (BRs) are a group of polyhydroxylated plant steroid hormones crucial for many aspects of plant life. BRs were originally characterized for their function in cell elongation, but it is becoming clear that they play major roles in plant growth, development and responses to several stresses such as temperature and drought. A BR signaling pathway from cell surface receptors to central transcription factors has been well characterized. Here we summarize recent progress towards understanding the BR pathway including BR perception and the molecular mechanisms of BR signaling. Next, we discuss the roles of BRs in development and stress responses. Finally, we show how knowledge of the BR pathway is being applied to manipulate the growth and stress responses in crops. These studies highlight the complex regulation of BR signaling, multiple points of crosstalk between BRs and other hormones or stress responses, and finely tuned spatiotemporal regulation of BR signaling.

453 citations

Journal ArticleDOI
TL;DR: The roles of the amino acids cysteine and methionine, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds, are discussed.
Abstract: Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.

347 citations