scispace - formally typeset
Search or ask a question
Author

Naoya Kuse

Bio: Naoya Kuse is an academic researcher from University of Tokushima. The author has contributed to research in topics: Phase noise & Frequency comb. The author has an hindex of 14, co-authored 60 publications receiving 542 citations. Previous affiliations of Naoya Kuse include University of Tokyo & National Presto Industries.


Papers
More filters
Journal ArticleDOI
TL;DR: A fully stabilized all polarization-maintaining Er frequency comb with a nonlinear amplifying loop mirror with below 0.2 rad carrier-envelope-offset frequency phase noise is demonstrated.
Abstract: A fully stabilized all polarization-maintaining Er frequency comb with a nonlinear amplifying loop mirror with below 0.2 rad carrier-envelope-offset frequency phase noise is demonstrated. The integrated timing jitter is measured as 40 attosecond from 10 kHz to 10 MHz, which is the lowest value of any Er fiber frequency comb to date.

177 citations

Journal ArticleDOI
TL;DR: Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.
Abstract: We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 ne. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.

64 citations

Journal ArticleDOI
TL;DR: It is shown that the form factor of a fiber comb can be reduced by adapting a graphene modulator for rapid repetition rate control and that the whole system demonstration is performed with all-polarization maintaining Er fiber frequency combs.
Abstract: High bandwidth carrier phase and repetition rate control are critical for the construction of low phase noise optical frequency combs. Here we demonstrate the use of a graphene modulator for the former and a bulk electro-optic modulator for the latter enabling record low phase noise operation of an Er fiber frequency comb. For applications that do not require carrier phase control, we show that the form factor of a fiber comb can be reduced by adapting a graphene modulator for rapid repetition rate control. Moreover, the whole system demonstration is performed with all-polarization maintaining Er fiber frequency combs, highly suitable for applications in the field.

48 citations

Journal ArticleDOI
09 Oct 2019
TL;DR: In this paper, a new class of LIDAR technique based on an optical frequency comb, named frequency-modulated comb LidAR (FMcomb Lidar), is proposed.
Abstract: Frequency-modulated continuous-wave LIDAR (FMCW LIDAR) has been widely used for both scientific and industrial tools. Here, in this report, a new class of LIDAR technique based on an optical frequency comb, named frequency-modulated comb LIDAR (FMcomb LIDAR), is proposed. Instead of using one carrier such as FMCW LIDAR, the multiple carriers from an optical frequency comb are used in FMcomb LIDAR. Because of the correlation between comb modes, each frequency-scanned comb mode can be coherently stitched, thus allowing for a resolution equivalent to scanning by many comb modes while scanning only by the comb mode spacing. In a proof-of-concept experiment, three comb modes from an electro-optic frequency comb (EO comb) are coherently stitched, showing Fourier-transform limited resolution (defined as FWHM linewidth) of 10 ps (i.e., 1.5 mm in air) for about 65 ns delay. The obtained resolution is three-times higher than that of conventional FMCW LIDAR when the same scan range is considered.

47 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time the stabilization of the fceo of such a PM Yb system with an in-loop fractional frequency stability scaled to an optical frequency of low 10-19 at 1 second averaging time, offering a great potential for applications in optical atomic clock metrology.
Abstract: We report the implementation of a self-referenced optical frequency comb generated by a passively mode-locked all polarization maintaining (PM) Yb fiber laser based on a nonlinear amplifying loop mirror (NALM). After spectral broadening the optical spectrum spans from 650 nm to 1400 nm, allowing for the generation of an optical octave and carrier envelope offset frequency (fceo) stabilization through a conventional f-2f interferometer. We demonstrate for the first time the stabilization of the fceo of such a PM Yb system with an in-loop fractional frequency stability scaled to an optical frequency of low 10-19 at 1 second averaging time, offering a great potential for applications in optical atomic clock metrology.

40 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, is reviewed.
Abstract: Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

1,158 citations

Journal ArticleDOI
20 Apr 2016
TL;DR: This review describes dual-comb spectroscopy and summarizes the current state of the art and suggests that frequency comb technology will continue to mature and could surpass conventional broadbandSpectroscopy for a wide range of laboratory and field applications.
Abstract: Dual-comb spectroscopy is an emerging new spectroscopic tool that exploits the frequency resolution, frequency accuracy, broad bandwidth, and brightness of frequency combs for ultrahigh-resolution, high-sensitivity broadband spectroscopy. By using two coherent frequency combs, dual-comb spectroscopy allows a sample’s spectral response to be measured on a comb tooth-by-tooth basis rapidly and without the size constraints or instrument response limitations of conventional spectrometers. This review describes dual-comb spectroscopy and summarizes the current state of the art. As frequency comb technology progresses, dual-comb spectroscopy will continue to mature and could surpass conventional broadband spectroscopy for a wide range of laboratory and field applications.

1,113 citations

Journal ArticleDOI
TL;DR: This work experimentally demonstrates a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing, and offers a powerful transdisciplinary instrument for analytical sciences.
Abstract: The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

361 citations

Journal ArticleDOI
14 May 2020-Nature
TL;DR: This approach provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems and has the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety.
Abstract: Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)1 is used for long-range three-dimensional distance and velocimetry in autonomous driving2,3. FMCW lidar maps distance to frequency4,5 using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar6,7 and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped8 and highly coherent5 laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb9. By fast chirping of the pump laser in the soliton existence range10 of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays11 based on nanophotonic gratings12, provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems. A massively parallel coherent light detection and ranging (lidar) scheme using a soliton microcomb—a light source that emits a wide spectrum of sharp lines with equally spaced frequencies—is described.

306 citations

Journal ArticleDOI
TL;DR: It is reached the point where the residual carrier–envelope-offset phase jitter and pulse timing jitter performance of such laser sources can be fully optimized to the unprecedented levels of attoseconds regime.
Abstract: We review the most recent progress in ultralow-noise mode-locked fiber lasers and fiber-based frequency-comb sources. With the rapid progress in theory, measurement, and control of noise in passively mode-locked fiber lasers, we have reached the point where the residual carrier–envelope-offset phase jitter (when stabilized) and pulse timing jitter performance of such laser sources can be fully optimized to the unprecedented levels of attoseconds regime. In this paper, first, major principles in building such low-noise passively mode-locked fiber lasers are reviewed. We then define noise in mode-locked fiber lasers and present the basic theoretical and numerical framework for analyzing the noise in mode-locked fiber lasers. More detailed discussions on theory, measurement methods, state-of-the-art performances, and stabilization methods of intensity noise, timing jitter, and comb-line frequency noise follow. Finally, we overview today’s most representative applications of such ultralow-noise mode-locked fiber lasers and frequency-comb sources. As an already powerful tool for various high-precision applications, ultralow-noise mode-locked fiber lasers will keep finding more exciting applications in optical science and photonic technology in the coming years.

294 citations