scispace - formally typeset
Search or ask a question
Author

Narain G. Hingorani

Bio: Narain G. Hingorani is an academic researcher. The author has contributed to research in topics: Thyristor & Power electronics. The author has an hindex of 9, co-authored 15 publications receiving 4689 citations.

Papers
More filters
Book
24 Dec 1999
TL;DR: The Flexible AC Transmission System (FACTS)—a new technology based on power electronics—offers an opportunity to enhance controllability, stability, and power transfer capability of ac transmission systems.

4,217 citations

17 Sep 1991
TL;DR: In this paper, the authors present a flexible AC transmission system (FACTS) based on silicon technology, which is a vision of the future based on the silicon science, which will surely revolutionize the power system.
Abstract: For economic reasons most if not all of the worlds electric power supply are widely interconnected, involving interconnections inside utilities own territories which extend to inter-utility interconnections and then to inter-regionals. The author describes how with this in mind, the Electric Power Research Institute representing the collaborative R&D arm of the US utilities, has put forward a concept, a vision of the future based on silicon science, called flexible AC transmission system (FACTS). While some of the relevant technology i.e., static VAR compensation is already in wide use, the FACTS concept has brought to the table a tremendous potential for thyristor based controllers which will surely revolutionize the power system. >

368 citations

Journal ArticleDOI
TL;DR: Thyristor-based HVDC converter technology is used for highly reliable power transfer across natural or national boundaries or between AC systems designed for different frequencies or incompatible frequency controls.
Abstract: Thyristor-based HVDC converter technology is used for highly reliable power transfer across natural or national boundaries or between AC systems designed for different frequencies or incompatible frequency controls. The author discusses the benefits of HVDC transmission and describes HVDC transmission system configurations. The author then describes the use of thyristors in HVDC converters.

90 citations

Book ChapterDOI
01 Jan 2000
TL;DR: This chapter contains sections titled: Objectives of Shunt Compensation Methods of Controllable Var Generation Static Var Compensators: SVC and STATCOM Comparison Between STATCOM and SVC Static Var Systems.
Abstract: This chapter contains sections titled: Objectives of Shunt Compensation Methods of Controllable Var Generation Static Var Compensators: SVC and STATCOM Comparison Between STATCOM and SVC Static Var Systems This chapter contains sections titled: References

23 citations

Proceedings ArticleDOI
23 May 1995
TL;DR: In this paper, the basic functions of importance for power electronics are (1) power conversion, ac to dc, dc to ac, ac-to-ac, dc-to ac, AC-toac, AC to ac.
Abstract: Power electronics is in the early stages of significant technological opportunities which will greatly enhance the role and value of electricity in all aspects from generation to the end of use. Power electronics represents an enabling means in enhancing the role and value of electricity. The basic functions of importance for power electronics are (1) power conversion, ac to dc, dc to ac, ac to ac, (2) power conditioning to remove distortion, harmonics, voltage dips and overvoltages, (3) high speed and/or frequent control of electrical parameters such as currents, voltage impedance, and phase angle, and (4) high speed and/or frequent circuit interruption transfer, and current limiting functions.

19 citations


Cited by
More filters
Book
01 Jan 2007
TL;DR: The p-q theory in three-phase, four-wire Shunt Active Filters as discussed by the authors has been applied to power flow control in power electronics equipment and has been shown to be useful in many applications.
Abstract: Preface. 1. Introduction. 1.1. Concepts and Evolution of Electric Power Theory. 1.2. Applications of the p-q Theory to Power Electronics Equipment. 1.3. Harmonic Voltages in Power Systems. 1.4. Identified and Unidentified Harmonic-Producing Loads. 1.5. Harmonic Current and Voltage Sources. 1.6. Basic Principles of Harmonic Compensation. 1.7. Basic Principles of Power Flow Control. References. 2. Electric Power Definitions: Background. 2.1. Power Definitions Under Sinusoidal Conditions. 2.2. Voltage and Current Phasors and the Complex Impedance. 2.3. Complex Power and Power Factor. 2.4. Concepts of Power Under Non-Sinusoidal Conditions -Conventional Approaches. 2.5. Electric Power in Three-Phase Systems. 2.6. Summary. References. 3 The Instantaneous Power Theory. 3.1. Basis of the p-q Theory. 3.2. The p-q Theory in Three-Phase, Three-Wire Systems. 3.3. The p-q Theory in Three-Phase, Four-Wire Systems. 3.4. Instantaneous abc Theory. 3.5. Comparisons between the p-q Theory and the abc Theory. 3.6. Summary. References. 4 Shunt Active Filters. 4.1. General Description of Shunt Active Filters. 4.2. Three-Phase, Three-Wire Shunt Active Filters. 4.3. Three-Phase, Four-Wire Shunt Active Filters. 4.4. Shunt Selective Harmonic Compensation. 4.5. Summary. References. 5 Hybrid and Series Active Filters. 5.1. Basic Series Active Filter. 5.2. Combined Series Active Filter and Shunt Passive Filter. 5.3. Series Active Filter Integrated with a Double-Series Diode Rectifier. 5.4. Comparisons Between Hybrid and Pure Active Filters. 5.5. Conclusions. References. 6 Combined Series and Shunt Power Conditioners. 6.1. The Unified Power Flow Controller (UPFC). 6.2. The Unified Power Quality Conditioner (UPQC). 6.3. The Universal Active Power Line Conditioner (UPLC). 6.4. Summary. References. Index.

2,038 citations

Journal ArticleDOI
TL;DR: An overview of the recent advances in the area of voltage-source converter (VSC) HVdc technology is provided in this paper, where a list of VSC-based HVDC installations worldwide is included.
Abstract: The ever increasing progress of high-voltage high-power fully controlled semiconductor technology continues to have a significant impact on the development of advanced power electronic apparatus used to support optimized operations and efficient management of electrical grids, which, in many cases, are fully or partially deregulated networks. Developments advance both the HVDC power transmission and the flexible ac transmission system technologies. In this paper, an overview of the recent advances in the area of voltage-source converter (VSC) HVdc technology is provided. Selected key multilevel converter topologies are presented. Control and modeling methods are discussed. A list of VSC-based HVdc installations worldwide is included. It is confirmed that the continuous development of power electronics presents cost-effective opportunities for the utilities to exploit, and HVdc remains a key technology. In particular, VSC-HVdc can address not only conventional network issues such as bulk power transmission, asynchronous network interconnections, back-to-back ac system linking, and voltage/stability support to mention a few, but also niche markets such as the integration of large-scale renewable energy sources with the grid and most recently large onshore/offshore wind farms.

2,023 citations

Book
27 Feb 2002
TL;DR: In this paper, the authors present a comparison of different SVC controllers for power transmission networks with respect to their performance in terms of the number of SVC inputs and outputs, as well as the frequency of the SVC outputs.
Abstract: 1. Introduction. 1.1 Background. 1.2 Electrical Transmission Networks. 1.3 Conventional Control Mechanisms. 1.4 Flexible ac Transmission Systems (FACTS). 1.5 Emerging Transmission Networks. 2. Reactor--Power Control in Electrical Power Transmission Systems. 2.1 Reacrive Power. 2.2 Uncompensated Transmission Lines. 2.3 Passive Compensation. 2.4 Summary. 3. Principles of Conventional Reactive--Power Compensators. 3.1 Introduction. 3.2 Synchronous Condensers. 3.3 The Saturated Reactor (SR). 3.4 The Thyristor--Controlled Reactor (TCR). 3.5 The Thyristor--Controlled Transformer (TCT). 3.6 The Fixed Capacitor--Thyristor--Controlled Reactor (FC--TCR). 3.7 The Mechanically Switched Capacitor--Thristor--Controlled Reactor (MSC--TCR). 3.8 The Thyristor--Switched capacitor and Reactor. 3.9 The Thyristor--Switched capacitor--Thyristor--Controlled Reactor (TSC--TCR). 3.10 A Comparison of Different SVCs. 3.11 Summary. 4. SVC Control Components and Models. 4.1 Introduction 4.2 Measurement Systems. 4.3 The Voltage Regulator. 4.4 Gate--Pulse Generation. 4.5 The Synchronizing System. 4.6 Additional Control and Protection Functions. 4.7 Modeling of SVC for Power--System Studies. 4.8 Summary. 5. Conceepts of SVC Voltage Control. 5.1 Introduction 5.2 Voltage Control. 5.3 Effect of Network Resonances on the Controller Response. 5.4 The 2nd Harmonic Interaction Between the SVC and ac Network. 5.5 Application of the SVC to Series--Compensated ac Systems. 5.6 3rd Harmonic Distortion. 5.7 Voltage--Controlled Design Studies. 5.8 Summary. 6. Applications. 6.1 Introduction. 6.2 Increase in Steady--State Power--Transfer Capacity. 6.3 Enhancement of Transient Stability. 6.4 Augmentation of Power--System Damping. 6.5 SVC Mitigation of Subsychronous Resonance (SSR). 6.6 Prevention of Voltage Instability. 6.7 Improvement of HVDC Link Performance. 6.8 Summary. 7. The Thyristor--Controlled SeriesCapacitor (TCSC). 7.1 Series Compensation. 7.2 The TCSC Controller. 7.3 Operation of the TCSC. 7.4 The TSSC. 7.5 Analysis of the TCSC. 7.6 Capability Characteristics. 7.7 Harmonic Performance. 7.8 Losses. 7.9 Response of the TCSC. 7.10 Modeling of the TCSC. 7.11 Summary. 8. TCSC Applications. 8.1 Introduction. 8.2 Open--Loop Control. 8.3 Closed--Loop Control. 8.4 Improvement of the System--Stability Limit. 8.5 Enhancement of System Damping. 8.6 Subsynchronous Resonanace (SSR) Mitigation. 8.7 Voltage--Collapse Prevention. 8.8 TCSC Installations. 8.9 Summary. 9. Coordination of FACTS Controllers. 9.1 Introduction 9.2 Controller Interactions. 9.3 SVC--SVC Interaction. 9.4 SVC--HVDC Interaction. 9.5 SVC--TCSC Interaction. 9.6 TCSC--TCSC Interaction. 9.7 Performance Criteria for Damping--Controller Design. 9.8 Coordination of Multiple Controllers Using Linear--Control Techniques. 9.9 Coordination of Multiple Controllers using Nonlinear--Control Techniques. 9.10 Summary. 10. Emerging FACTS Controllers. 10.1 Introduction. 10.2 The STATCOM. 10.3 THE SSSC. 10.4 The UPFC. 10.5 Comparative Evaluation of Different FACTS Controllers. 10.6 Future Direction of FACTS Technology. 10.7 Summary. Appendix A. Design of an SVC Voltage Regulator. A.1 Study System. A.2 Method of System Gain. A.3 Elgen Value Analysis. A.4 Simulator Studies. A.5 A Comparison of Physical Simulator results With Analytical and Digital Simulator Results Using Linearized Models. Appendix B. Transient--Stability Enhancement in a Midpoint SVC--Compensated SMIB System. Appendix C. Approximate Multimodal decomposition Method for the Design of FACTS Controllers. C.1 Introduction. C.2 Modal Analysis of the ith Swing Mode, C.3 Implications of Different Transfer Functions. C.4 Design of the Damping Controller. Appendix D. FACTS Terms and Definitions. Index.

954 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a systematical technology review essential for the development and application of SST in the distribution system, including high-voltage power devices, high-power and high-frequency transformers, ac/ac converter topologies, and future research directions.
Abstract: The solid-state transformer (SST), which has been regarded as one of the 10 most emerging technologies by Massachusetts Institute of Technology (MIT) Technology Review in 2010, has gained increasing importance in the future power distribution system. This paper presents a systematical technology review essential for the development and application of SST in the distribution system. The state-of-the-art technologies of four critical areas are reviewed, including high-voltage power devices, high-power and high-frequency transformers, ac/ac converter topologies, and applications of SST in the distribution system. In addition, future research directions are presented. It is concluded that the SST is an emerging technology for the future distribution system.

897 citations

Journal ArticleDOI
TL;DR: In this article, the principle of modularity is used to derive the different multilevel voltage and current source converter topologies for high-power dc systems, where the derived converter cells are treated as building blocks and are contributing to the modularity of the system.
Abstract: In this paper, the principle of modularity is used to derive the different multilevel voltage and current source converter topologies. The paper is primarily focused on high-power applications and specifically on high-voltage dc systems. The derived converter cells are treated as building blocks and are contributing to the modularity of the system. By combining the different building blocks, i.e., the converter cells, a variety of voltage and current source modular multilevel converter topologies are derived and thoroughly discussed. Furthermore, by applying the modularity principle at the system level, various types of high-power converters are introduced. The modularity of the multilevel converters is studied in depth, and the challenges as well as the opportunities for high-power applications are illustrated.

883 citations