scispace - formally typeset
Search or ask a question
Author

Narasimha Reddy Parine

Bio: Narasimha Reddy Parine is an academic researcher from King Saud University. The author has contributed to research in topics: Population & Single-nucleotide polymorphism. The author has an hindex of 17, co-authored 68 publications receiving 836 citations. Previous affiliations of Narasimha Reddy Parine include Centre for Cellular and Molecular Biology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Biological function of MEG3 to repress tumor through regulating the major tumor suppressor genes p53 and Rb, inhibiting angiogenesis-related factor, or controlling miRNAs is highlighted.
Abstract: Long noncoding RNAs (lncRNAs) have recently considered as central regulators in diverse biological processes and emerged as vital players controlling tumorigenesis. Several lncRNAs can be classified into oncogenes and tumor suppressor genes depending on their function in cancer. A maternally expressed gene 3 (MEG3) gene transcripts a 1.6 kb lncRNA whose act as an antitumor component in different cancer cells, such as breast, liver, glioma, colorectal, cervical, gastric, lung, ovarian and osteosarcoma cancer cells. The present review highlights biological function of MEG3 to repress tumor through regulating the major tumor suppressor genes p53 and Rb, inhibiting angiogenesis-related factor, or controlling miRNAs. On the other hand, previous studies have also suggested that MEG3 mediates epithelial-mesenchymal transition (EMT). However, deregulation of MEG3 is associated with the development and progression of cancer, suggesting that MEG3 may function as a potential biomarker and therapeutic target for human cancers.

115 citations

Journal ArticleDOI
TL;DR: Broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.
Abstract: In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV–Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV–Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24–38 nm for gold and 30–45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.

77 citations

Journal ArticleDOI
TL;DR: Aqueous extracts of C. nudiflora has significant control over free radical scavenging activity and inhibition of the growth of food pathogenic bacteria, and the aqueous extract contains abundance of phenolics and flavonoids higher than other extracts.

56 citations

Journal ArticleDOI
TL;DR: The results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production and enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO2 sequestration, biodieselProduction, and wastewater phycoremediation.

56 citations

Journal ArticleDOI
15 Jan 2016-PLOS ONE
TL;DR: The data suggest that TLR4 SNPs could possibly serve as biomarkers for decision making in colon cancer treatment and clear evidence for an association betweenTLR4 rs10759931 polymorphism is reported.
Abstract: Our aim was to evaluate the association between the expression and the polymorphism of TLR4/NF-κB pathways and colon cancer. TLR4 (rs4986790, rs10759932, rs10759931 and rs2770150) were genotyped in blood samples from Colorectal patients and healthy controls. TLR4 and cytokines inflammatory expression were evaluated by real time PCR on 40 matching normal and colon tissues and the protein level by Immunohistochemistry. The high level of TLR4 expression in colon cancer tissues is mainly due to infections by bacteria in the human colon and leads to induction of an acute secretion of inflammatory cytokines mediated by NF-κB. Also, we report here a clear evidence for an association between TLR4 rs10759931 polymorphism (OR = 0.086, CI: 0.04–0.18, P = <0.00001). This polymorphism affects the entire population without being specific to either gender or to any age group. In contrast, the rs2770150 is associated with colon cancer in women aged over 50 years and is closely linked with the decreased levels of female sex hormones during the post-menopausal period (OR = 0.188, CI: 0.074–0.48, P = <0.00084). rs10759932 and rs4986790 appear to have any association with colon cancer. Our data suggest that TLR4 SNPs could possibly serve as biomarkers for decision making in colon cancer treatment.

53 citations


Cited by
More filters
Journal ArticleDOI

1,380 citations

Journal ArticleDOI
01 Sep 2019-Cells
TL;DR: The latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma are discussed.
Abstract: The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.

490 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the impact of different solvents on extraction yields, phytochemical constituents and antioxidants, and in vitro anti-inflammatory activities of S. buxifolia.
Abstract: Severinia buxifolia (Rutaceae) is a promising source of bioactive compounds since it has been traditionally used for the treatment of various diseases. The present study aimed at evaluating the impact of different solvents on extraction yields, phytochemical constituents and antioxidants, and in vitro anti-inflammatory activities of S. buxifolia. The results showed that the used solvents took an important role in the yield of extraction, the content of chemical components, and the tested biological activities. Methanol was identified as the most effective solvent for the extraction, resulting in the highest extraction yield (33.2%) as well as the highest content of phenolic (13.36 mg GAE/g DW), flavonoid (1.92 mg QE/g DW), alkaloid (1.40 mg AE/g DW), and terpenoids (1.25%, w/w). The extract obtained from methanol exhibited high capacity of antioxidant (IC50 value of 16.99 μg/mL) and in vitro anti-inflammatory activity (i.e., albumin denaturation: IC50 = 28.86 μg/mL; antiproteinase activity: IC50 = 414.29 μg/mL; and membrane stabilization: IC50 = 319 μg/mL). The antioxidant activity of the S. buxifolia extract was found to be 3-fold higher than ascorbic acid, and the anti-inflammatory activity of S. buxifolia extract was comparable to aspirin. Therefore, methanol is recommended as the optimal solvent to obtain high content of phytochemical constituents as well as high antioxidants and in vitro anti-inflammatory constituents from the branches of S. buxifolia for utilization in pharmacognosy.

327 citations

Journal ArticleDOI
TL;DR: This review article summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields.
Abstract: Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed.

273 citations