scispace - formally typeset
Search or ask a question
Author

Narayan Krishnaswamy

Bio: Narayan Krishnaswamy is an academic researcher from Sai Vidya Institute of Technology. The author has contributed to research in topics: Waveguide (optics) & Refractive index. The author has an hindex of 3, co-authored 14 publications receiving 23 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a ring resonator-based sensor is designed such that both rings exhibit resonance at 1550 nm and it is analyzed at mid-infrared wavelengths between 1500 and 1600 nm.
Abstract: A simulation and analysis of a ring resonator-based sensor are presented. The ring resonator structure has two bus waveguides and two rings with a gap between the ring and the ring and bus waveguide. The radius of each ring is designed to be 3.1 μm. The ring resonator is designed such that both rings exhibit resonance at 1550 nm, and it is analyzed at mid-infrared wavelengths between 1500 and 1600 nm. The guided signal is launched through the bus waveguide to determine spectral properties, such as free spectral range and quality (Q-) factor. An improved Q-factor is observed in the simulation results for the optimized design. The improved Q-factor allows us to analyze the ring resonator for use in sensing applications.

16 citations

Journal ArticleDOI
TL;DR: In this paper, a lateral dual-axis a-Si/SiO2 waveguide Bragg grating based quad-beam accelerometer with high-resolution and large linear range has been presented.
Abstract: A novel lateral dual-axis a-Si/SiO2 waveguide Bragg grating based quad-beam accelerometer with high-resolution and large linear range has been presented in this paper. The sensor consists of silicon bulk micromachined proof mass suspended by silica beams. Three ridge gratings are positioned on the suspending beam and proof mass to maximize sensitivity and reduce noise. Impact of external acceleration in the sensing direction on the Bragg wavelength of gratings and MEMS structure has been modelled including the effects of strain, stress and temperature variation. Acceleration induces stress in the beam thus modifying the grating period and introducing chirp. The differential wavelength shift with respect to reference grating on the proof mass is the measure of acceleration. To compensate for the effect of the weight of the proof mass and increase the sensitivity of the sensor, electrostatic force of repulsion is applied to the proof mass. For the chosen parameters, the designed sensor has a linear response over a large range and a sensitivity of 30 pm/g. The temperature of surroundings, which acts as noise in sensor performance is compensated by taking differential wavelength shift with respect to reference grating. By design and choice of material, low cross-axis sensitivity is achieved. The proposed design enables a high-resolution well below 1 μ g/ Hz and is suitable for inertial navigation and seismometry applications.

13 citations

Journal ArticleDOI
TL;DR: In this article, the design and optimization of compact taper is presented to enable coupling of infrared light in the C-band with the nano-photonic silicon-on-insulator (SOI) integrated optical waveguide.
Abstract: In this work, the design and optimization of compact taper is presented to enable coupling of infrared light in the C-band with the nano-photonic silicon-on-insulator (SOI) integrated optical waveg...

4 citations

Proceedings ArticleDOI
25 Oct 2020
TL;DR: In this paper, a waveguide Bragg grating is placed on the shin of a crab-leg to maximize the strain sensitivity and compensate for the temperature dependence of Bragg spectral properties.
Abstract: Design and analysis of high-sensitivity optical MEMS accelerometer based on waveguide Bragg grating integrated with Crab-leg beam for low frequency applications is presented in this paper. Crab-leg beam are used to suspend the proof-mass to decrease spring stiffness with low device footprint. A waveguide Bragg grating is positioned on the shin of crab-leg to maximize strain sensitivity. To compensate for the temperature dependence of Bragg spectral properties, a reference grating positioned on the proof-mass is used. Due to excellent linear response, high-sensitivity of 184 pm/g and low fundamental frequency, the proposed accelerometer is suitable for microgravity and seismometry applications.

4 citations

Journal ArticleDOI
TL;DR: In this article, a silicon-on-insulator (SOI) grating coupler integrated with a microfluidic channel was designed to operate at 1310 nm and the sensitivity of the grating structure was analyzed and evaluated using the change in coupled power as a function of the effective refractive index.
Abstract: The design, modeling, and analysis of a silicon-on-insulator (SOI) grating coupler integrated with a microfluidic channel for lab-on-a-chip applications are presented. The grating coupler was designed to operate at 1310 nm. The simulated SOI structure consisted of a 220 nm top-Si device layer with an integrated waveguide, grating coupler, and a buried oxide layer of 2 µm. A rectangular microfluidic channel was deposited on the SOI optical grating structure for light and fluid interaction. The fluidic flow through the device was driven by centrifugal and Coriolis forces. The grating structure was designed to achieve a maximum coupling efficiency at the optimized injection angle of the light source. The sensitivity of the grating structure could be analyzed and evaluated using the change in coupled power as a function of the effective refractive index and was found to be 0.928 × 10−6 RIU. The SOI optical grating structure along with the micro fluidic channel on top could be effectively used as an absorbance-based lab-on-a-chip biosensor.

4 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1895-Nature
TL;DR: In this paper, it was shown that it is possible under certain suppositions to have a number of spectral rays with a very restricted number of degrees of freedom, and that the vibrations under these circumstances would not be quite homogeneous, but if the electron oscillates about any one position sufficiently long to perform a few thousand oscillations, we should hardly notice the want of homogeneity.
Abstract: THE difficulty of reconciling line spectra with the kinetic theory of gases, has been referred to by Prof. Fitzgerald (NATURE, January 3, p. 221). The following considerations show that it is possible under certain suppositions to have a number of spectral rays with a very restricted number of degrees of freedom. Most of us, I believe, now accept a definite atomic charge of electricity, and if each charge is imagined to be capable of moving along the surface of an atom, it would represent two degrees of freedom. If a molecule is capable of sending out a homogeneous vibration, it means that there must be a definite position of equilibrium of the “electron.” If there are several such positions, the vibrations may take place in several periods. Any one molecule may perform for a certain time a simple periodic oscillation about one position of equilibrium, and owing to some impact the electron may be knocked over into a new position. The vibrations under these circumstances would not be quite homogeneous, but if the electron oscillates about any one position sufficiently long to perform a few thousand oscillations, we should hardly notice the want of homogeneity. Each electron at a given time would only send out vibrations which in our instruments would appear as homogeneous. Each molecule could thus successively give rise to a number of spectral rays, and at any one time the electron in the different molecules would, by the laws of probability, be distributed over all possible positions of equilibrium, so that we should always see all the vibrations which any one molecule of the gas is capable of sending out. The probability of an electron oscillating about one of its positions of equilibrium need not be the same in all cases. Hence a line may be weak not because the vibration has a smaller amplitude, but because fewer molecules give rise to it. The fact that the vibrations of a gas are not quite homogeneous, is borne out by experiment. If impacts become more frequent by increased pressure, we should expect from the above views that the time during which an electron performs a certain oscillation is shortened; hence the line should widen, which is the case. I have spoken, for the sake of simplicity, as if an electron vibrating about one position of equilibrium could only do so in one period. If the forces called into play, by a displacement, depend on the direction of the displacement, there would be two possible frequencies. If the surface is nearly symmetrical, we should have double lines.

463 citations

Book
01 Jan 2006
TL;DR: Theorems and Formulas used in this chapter relate to theorems in optical waveguides and lightwave Circuits that describe the behaviour of Planar Waveguides through the response of the E-modulus effect.
Abstract: Preface 1. Wave Theory of Optical Waveguides 2. Planar Optical Waveguides 3. Optical Fibers 4. Couple Mode Theory 5. Nonlinear Optical Effects in Optical Fibers 6. Finite Element Method 7. Beam Propagation Method 8. Staircase Concatention Method 9. Planar Lightwave Circuits 10. Theorems and Formulas Appendix

359 citations

Journal ArticleDOI
11 Mar 2020-Sensors
TL;DR: A reusable, non-invasive and ultrafast radio frequency biosensor based on optimized integrated passive device fabrication process for quantitative detection of glucose level was developed, providing an approach for achieving quantitative detection and a structure without metal-insulator-metal type capacitor that realizes low cost and high reliability.
Abstract: The increase in the number of people suffering diabetes has been the driving force behind the development of glucose sensors to overcome the current testing shortcomings. In this work, a reusable, non-invasive and ultrafast radio frequency biosensor based on optimized integrated passive device fabrication process for quantitative detection of glucose level was developed. With the aid of the novel biosensor design with hammer-shaped capacitors for carrying out detection, both the resonance frequency and magnitude of reflection coefficient can be applied to map the different glucose levels. Meanwhile, the corresponding fabrication process was developed, providing an approach for achieving quantitative detection and a structure without metal-insulator-metal type capacitor that realizes low cost and high reliability. To enhance the sensitivity of biosensor, a 3-min dry etching treatment based on chlorine/argon-based plasma was implemented for realizing hydrophilicity of capacitor surface to ensure that the biosensor can be touched rapidly with glucose. Based on above implementation, a non-invasive biosensor having an ultrafast response time of superior to 0.85 s, ultralow LOD of 8.01 mg/dL and excellent reusability verified through five sets of measurements are realized. The proposed approaches are not limited the development of a stable and accurate platform for the detection of glucose levels but also presents a scheme toward the detection of glucose levels in human serum.

14 citations

Journal ArticleDOI
TL;DR: In this article, a real-time non-invasive metamaterial sensor based on a corona-shaped resonator was designed numerically and fabricated experimentally in order to be utilized for efficient detection of glucose in aqueous solutions such as water and blood.
Abstract: In this work, a new design for a real-time noninvasive metamaterial sensor, based on a corona-shaped resonator, is proposed. The sensor was designed numerically and fabricated experimentally in order to be utilized for efficient detection of glucose in aqueous solutions such as water and blood. The sensor was inspired by a corona in-plane-shaped design with the presumption that its circular structure might produce a broader interaction of the electromagnetic waves with the glucose samples. A clear shift in the resonance frequency was observed for various glucose samples, which implies that the proposed sensor has a good sensitivity and can be easily utilized to distinguish any glucose concentration, even though their dielectric coefficients are close. Results showed a superior performance in terms of resonance frequency shift (1.51 GHz) and quality factor (246) compared to those reported in the literature. The transmission variation level ∆|S21| was investigated for glucose concentration in both water and blood. The sensing mechanism was elaborated through the surface current, electric field and magnetic field distributions on the corona resonator. The proposed metamaterials sensor is considered to be a promising candidate for biosensor and medicine applications in human glycaemia monitoring.

13 citations

Journal ArticleDOI
TL;DR: In this paper, a lateral dual-axis a-Si/SiO2 waveguide Bragg grating based quad-beam accelerometer with high-resolution and large linear range has been presented.
Abstract: A novel lateral dual-axis a-Si/SiO2 waveguide Bragg grating based quad-beam accelerometer with high-resolution and large linear range has been presented in this paper. The sensor consists of silicon bulk micromachined proof mass suspended by silica beams. Three ridge gratings are positioned on the suspending beam and proof mass to maximize sensitivity and reduce noise. Impact of external acceleration in the sensing direction on the Bragg wavelength of gratings and MEMS structure has been modelled including the effects of strain, stress and temperature variation. Acceleration induces stress in the beam thus modifying the grating period and introducing chirp. The differential wavelength shift with respect to reference grating on the proof mass is the measure of acceleration. To compensate for the effect of the weight of the proof mass and increase the sensitivity of the sensor, electrostatic force of repulsion is applied to the proof mass. For the chosen parameters, the designed sensor has a linear response over a large range and a sensitivity of 30 pm/g. The temperature of surroundings, which acts as noise in sensor performance is compensated by taking differential wavelength shift with respect to reference grating. By design and choice of material, low cross-axis sensitivity is achieved. The proposed design enables a high-resolution well below 1 μ g/ Hz and is suitable for inertial navigation and seismometry applications.

13 citations