scispace - formally typeset
Search or ask a question
Author

Narayanan C. Krishnan

Bio: Narayanan C. Krishnan is an academic researcher from Indian Institute of Technology Ropar. The author has contributed to research in topics: Activity recognition & Computer science. The author has an hindex of 21, co-authored 68 publications receiving 2575 citations. Previous affiliations of Narayanan C. Krishnan include Arizona State University & Washington State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The CASAS architecture facilitates the development and implementation of future smart home technologies by offering an easy-to-install lightweight design that provides smart home capabilities out of the box with no customization or training.
Abstract: The CASAS architecture facilitates the development and implementation of future smart home technologies by offering an easy-to-install lightweight design that provides smart home capabilities out of the box with no customization or training.

557 citations

Journal ArticleDOI
TL;DR: The experiments conducted on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.

446 citations

Journal ArticleDOI
TL;DR: The literature is surveyed to highlight recent advances in transfer learning for activity recognition, and existing approaches to transfer-based activity recognition are characterized by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred.
Abstract: Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper, we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed.

395 citations

Proceedings ArticleDOI
26 Jun 2012
TL;DR: The results from the experiments indicate that, in isolation, while simple activities can be easily recognized, the performance of the prediction models on complex activities is poor, however, the prediction model is robust enough to recognize simple activities even in the presence of complex activities.
Abstract: Due to an increased popularity of assistive healthcare technologies activity recognition has become one of the most widely studied problems in technology-driven assistive healthcare domain. Current approaches for smart-phone based activity recognition focus only on simple activities such as locomotion. In this paper, in addition to recognizing simple activities, we investigate the ability to recognize complex activities, such as cooking, cleaning, etc. through a smart phone. Features extracted from the raw inertial sensor data of the smart phone corresponding to the user's activities, are used to train and test supervised machine learning algorithms. The results from the experiments conducted on ten participants indicate that, in isolation, while simple activities can be easily recognized, the performance of the prediction models on complex activities is poor. However, the prediction model is robust enough to recognize simple activities even in the presence of complex activities.

329 citations

Journal ArticleDOI
TL;DR: This paper describes a method by which activity discovery can be used to identify behavioral patterns in observational data and demonstrates that activity discovery not only sheds light on behavioral patterns, but it can also boost the performance of recognition algorithms.
Abstract: Activity recognition has received increasing attention from the machine learning community. Of particular interest is the ability to recognize activities in real time from streaming data, but this presents a number of challenges not faced by traditional offline approaches. Among these challenges is handling the large amount of data that does not belong to a predefined class. In this paper, we describe a method by which activity discovery can be used to identify behavioral patterns in observational data. Discovering patterns in the data that does not belong to a predefined class aids in understanding this data and segmenting it into learnable classes. We demonstrate that activity discovery not only sheds light on behavioral patterns, but it can also boost the performance of recognition algorithms. We introduce this partnership between activity discovery and online activity recognition in the context of the CASAS smart home project and validate our approach using CASAS data sets.

219 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations