scispace - formally typeset
Search or ask a question
Author

Narayanan Manoj

Bio: Narayanan Manoj is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Active site & Thermotoga maritima. The author has an hindex of 11, co-authored 36 publications receiving 635 citations. Previous affiliations of Narayanan Manoj include Indian Institute of Science & Indian Institutes of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The present review discusses the current understanding of PLSCR1 in relation to its trafficking, localization and signaling functions.

201 citations

Journal ArticleDOI
TL;DR: An analysis of the Ciona repertoire of GPCRs from a comparative genomic perspective provides insight into the evolutionary origins of the GPCR signalling system in vertebrates and suggests that the ascidians contain the basic ancestral complement of vertebrate G PCR genes.
Abstract: G protein-coupled receptors (GPCRs) constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in eukaryotes. The genome of the protochordate Ciona intestinalis has a compact size with an ancestral complement of many diversified gene families of vertebrates and is a good model system for studying protochordate to vertebrate diversification. An analysis of the Ciona repertoire of GPCRs from a comparative genomic perspective provides insight into the evolutionary origins of the GPCR signalling system in vertebrates. We have identified 169 gene products in the Ciona genome that code for putative GPCRs. Phylogenetic analyses reveal that Ciona GPCRs have homologous representatives from the five major GRAFS (Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin) families concomitant with other vertebrate GPCR repertoires. Nearly 39% of Ciona GPCRs have unambiguous orthologs of vertebrate GPCR families, as defined for the human, mouse, puffer fish and chicken genomes. The Rhodopsin family accounts for ~68% of the Ciona GPCR repertoire wherein the LGR-like subfamily exhibits a lineage specific gene expansion of a group of receptors that possess a novel domain organisation hitherto unobserved in metazoan genomes. Comparison of GPCRs in Ciona to that in human reveals a high level of orthology of a protochordate repertoire with that of vertebrate GPCRs. Our studies suggest that the ascidians contain the basic ancestral complement of vertebrate GPCR genes. This is evident at the subfamily level comparisons since Ciona GPCR sequences are significantly analogous to vertebrate GPCR subfamilies even while exhibiting Ciona specific genes. Our analysis provides a framework to perform future experimental and comparative studies to understand the roles of the ancestral chordate versions of GPCRs that predated the divergence of the urochordates and the vertebrates.

104 citations

Journal ArticleDOI
TL;DR: This study identifies and classify GPCRs in Amphimedon queenslandica (sponge), a member of an earliest diverging metazoan lineage (Porifera), and provides a framework to perform future experimental and comparative studies to further verify and understand the roles of GPCR that predates the divergence of bilaterian and eumetazoan lineages.
Abstract: G protein-coupled receptors (GPCRs) play a central role in eukaryotic signal transduction. However, the GPCR component of this signalling system, at the early origins of metazoans is not fully understood. Here we aim to identify and classify GPCRs in Amphimedon queenslandica (sponge), a member of an earliest diverging metazoan lineage (Porifera). Furthermore, phylogenetic comparisons of sponge GPCRs with eumetazoan and bilaterian GPCRs will be essential to our understanding of the GPCR system at the roots of metazoan evolution. We present a curated list of 220 GPCRs in the sponge genome after excluding incomplete sequences and false positives from our initial dataset of 282 predicted GPCR sequences obtained using Pfam search. Phylogenetic analysis reveals that the sponge genome contains members belonging to four of the five major GRAFS families including Glutamate (33), Rhodopsin (126), Adhesion (40) and Frizzled (3). Interestingly, the sponge Rhodopsin family sequences lack orthologous relationships with those found in eumetazoan and bilaterian lineages, since they clustered separately to form sponge specific groups in the phylogenetic analysis. This suggests that sponge Rhodopsins diverged considerably from that found in other basal metazoans. A few sponge Adhesions clustered basal to Adhesion subfamilies commonly found in most vertebrates, suggesting some Adhesion subfamilies may have diverged prior to the emergence of Bilateria. Furthermore, at least eight of the sponge Adhesion members have a hormone binding motif (HRM domain) in their N-termini, although hormones have yet to be identified in sponges. We also phylogenetically clarified that sponge has homologs of metabotropic glutamate (mGluRs) and GABA receptors. Our phylogenetic comparisons of sponge GPCRs with other metazoan genomes suggest that sponge contains a significantly diversified set of GPCRs. This is evident at the family/subfamily level comparisons for most GPCR families, in particular for the Rhodopsin family of GPCRs. In summary, this study provides a framework to perform future experimental and comparative studies to further verify and understand the roles of GPCRs that predates the divergence of bilaterian and eumetazoan lineages.

38 citations

Book ChapterDOI
01 Jan 2007
TL;DR: Pectin and other pectic substances are complex polysaccharides, which contribute firmness and structure to plant tissues as a part of the middle lamella as mentioned in this paper.
Abstract: Pectin and other pectic substances are complex polysaccharides, which contribute firmness and structure to plant tissues as a part of the middle lamella. The basic unit in pectic substances is galacturonan ( -D-galacturonic acid). Pectic substances are classified into two types; homogalacturonan and heterogalacturonan (rhamnogalacturonan). In homogalacturonan, the main polymer chain consists of -D-galacturonate units linked by 1 → 4 glycosidic bonds, whereas in rhamnogalacturonan, the primary chain consist of 1→ 4 linked -D-glacturonates and with about 2–4% L-rhamnose units that are 1→ 2 and 1→ 4 linked to D-galacturonate units (Whitaker, 1991). The side chains of rhamnogalacturonans usually consist of L-arabinose or D-galacturonic acid units. In plant tissues, about 60–70% of the galacturonate units are esterified with methanol and occasionally with ethanol. Based on the degree of esterification, pectic substances are classified into protopectin, pectinic acid, pectin and polygalacturonic acid (Table 1). Molecular size, degree of esterification and weight distribution of polygalacturonic acid residues are important factors that contribute to heterogeneity in pectic substances. Relative molecular masses of pectic substances isolated from various sources such as citrus fruits, apple and plums, range from 25 to 350 kDa. Pectinases are a complex and diverse group of enzymes involved in the degradation of pectic substances. The diversity of forms of pectic substances in plant cells probably accounts for the existence of various forms of these enzymes. Pectinases are classified depending on their substrate and mode of enzymatic reaction (Fig. 1). Pectinases act as carbon recycling agents in nature by degrading pectic substances to saturated and unsaturated galacturonans, which are further catabolized

37 citations

Journal ArticleDOI
TL;DR: The structure of human phosphopantothenoylcysteine (PPC) synthetase was determined at 2.3 A resolution and predicts a ping pong mechanism with initial formation of an acyladenylate intermediate, followed by release of pyrophosphate and attack by cysteine to form the final products PPC and AMP.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current knowledge about complement’s emerging relationship with the cellular metabolism machinery is covered with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions.
Abstract: The complement system is an evolutionary old and crucial component of innate immunity key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph and interstitial fluids that mediates the opsonization and lytic killing of bacteria, fungi and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity – indicating that complement’s function is likely broader than initially anticipated - the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond ‘classic’ immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature – mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather ‘predictable’ but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.

795 citations

Journal ArticleDOI
TL;DR: Emerging knowledge of the actions of Ca(2+) upstream and downstream of Abeta provides opportunities to develop novel preventative and therapeutic interventions for AD.

795 citations

Journal ArticleDOI
TL;DR: The determinants and functional implications of the subcellular distribution and membrane topology of the most abundant negatively charged phospholipid in eukaryotic membranes are discussed.
Abstract: Phosphatidylserine (PS) is the most abundant negatively charged phospholipid in eukaryotic membranes. PS directs the binding of proteins that bear C2 or gamma-carboxyglutamic domains and contributes to the electrostatic association of polycationic ligands with cellular membranes. Rather than being evenly distributed, PS is found preferentially in the inner leaflet of the plasma membrane and in endocytic membranes. The loss of PS asymmetry is an early indicator of apoptosis and serves as a signal to initiate blood clotting. This review discusses the determinants and functional implications of the subcellular distribution and membrane topology of PS.

793 citations

Journal ArticleDOI
05 Mar 2010-Cell
TL;DR: How the endogenous components of dead cells activate the immune system through both extracellular and intracellular pathways is discussed.

769 citations

Journal ArticleDOI
TL;DR: Several new factors that regulate engulfment have been identified, whereas the roles of some of the older players require revision.
Abstract: The clearance of apoptotic cells by phagocytes is an integral component of normal life, and defects in this process can have significant implications for self tolerance and autoimmunity. Recent studies have provided new insights into the engulfment process, including how phagocytes seek apoptotic cells, how they recognize and ingest these targets and how they maintain cellular homeostasis after the 'meal'. Several new factors that regulate engulfment have been identified, whereas the roles of some of the older players require revision. This Review focuses on these recent developments and attempts to highlight some of the important questions in this field.

624 citations