scispace - formally typeset
Search or ask a question
Author

Narendra Kumar Shukla

Bio: Narendra Kumar Shukla is an academic researcher from Shiv Nadar University. The author has contributed to research in topics: Brain–computer interface & Computer science. The author has an hindex of 2, co-authored 2 publications receiving 18 citations.

Papers
More filters
Proceedings ArticleDOI
01 Feb 2018
TL;DR: It is demonstrated that temporal correlation of pollutant concentration can be exploited to select optimum sampling period of an energy-intensive sensor to reduce sensing energy consumption without losing much information.
Abstract: Air pollution monitoring systems with energy-intensive sensors cannot afford to sample frequently in order to maximize time between successive recharges. In this paper, we propose an energy-efficient machine learning based sensor duty-cycling method for a sensor hub receiving data from the air-pollution sensors. In particular, we demonstrate that temporal correlation of pollutant concentration can be exploited to select optimum sampling period of an energy-intensive sensor to reduce sensing energy consumption without losing much information. Support Vector Regression is used to predict the missing samples during the period sensor is turned off.

12 citations

Proceedings ArticleDOI
01 Dec 2016
TL;DR: An efficient on-demand-online profiler, called pProf, that learns from offline-precomputed model parameters to reduce the online profiling cost, and consumes typically 10–15% lesser energy.
Abstract: Energy cost of crowd-sourced continuous sensing is reported to be quite high. As the number of on-board active sensors increases, complications arise due to inter-sensor interactions. The energy-cost of the Smartphones is primarily due to wireless communications (in various modes, such as, cellular radio, GPS, Wi-Fi direct, and Bluetooth) and environmental sensing using its embedded sensors in a wireless personal area network setting. The existing popular on-device-online energy-cost profilers for Android Smartphones, namely, Amobisense and PowerTutor, are energy-hungry. In this paper, we report an efficient on-demand-online profiler, called pProf, that learns from offline-precomputed model parameters to reduce the online profiling cost. We have tested our proposed technique in a customized test-bed setup comprising of the Android Smart-phones with embedded sensors that also communicate with the neighborhood sensors on smart-wearables and Sensorcon's Sensordrone platform. Our experimental measurement studies demonstrate that, compared to the popular profilers, such as Amobisense and PowerTutor, pProf consumes typically 10–15% lesser energy.

11 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors illustrate the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

136 citations

Journal ArticleDOI
TL;DR: This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor.
Abstract: The advancement and popularity of smartphones have made it an essential and all-purpose device. But lack of advancement in battery technology has held back its optimum potential. Therefore, considering its scarcity, optimal use and efficient management of energy are crucial in a smartphone. For that, a fair understanding of a smartphone’s energy consumption factors is necessary for both users and device manufacturers, along with other stakeholders in the smartphone ecosystem. It is important to assess how much of the device’s energy is consumed by which components and under what circumstances. This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor. The main contribution of this paper is four comprehensive literature reviews on: 1) smartphone’s power consumption assessment and estimation (including power consumption analysis and modelling); 2) power consumption management for smartphones (including energy-saving methods and techniques); 3) state-of-the-art of the research and commercial developments of smartphone batteries (including alternative power sources); and 4) mitigating the hazardous issues of smartphones’ batteries (with a details explanation of the issues). The research works are further subcategorized based on different research and solution approaches. A good number of recent empirical research works are considered for this comprehensive review, and each of them is succinctly analysed and discussed.

87 citations

Posted Content
TL;DR: The rapidly growing research landscape of low-cost sensor technologies for air quality monitoring and their calibration using machine learning techniques is surveyed and open research challenges are identified and present directions for future research.
Abstract: The significance of air pollution and the problems associated with it are fueling deployments of air quality monitoring stations worldwide. The most common approach for air quality monitoring is to rely on environmental monitoring stations, which unfortunately are very expensive both to acquire and to maintain. Hence environmental monitoring stations are typically sparsely deployed, resulting in limited spatial resolution for measurements. Recently, low-cost air quality sensors have emerged as an alternative that can improve the granularity of monitoring. The use of low-cost air quality sensors, however, presents several challenges: they suffer from cross-sensitivities between different ambient pollutants; they can be affected by external factors, such as traffic, weather changes, and human behavior; and their accuracy degrades over time. Periodic re-calibration can improve the accuracy of low-cost sensors, particularly with machine-learning-based calibration, which has shown great promise due to its capability to calibrate sensors in-field. In this article, we survey the rapidly growing research landscape of low-cost sensor technologies for air quality monitoring and their calibration using machine learning techniques. We also identify open research challenges and present directions for future research.

54 citations

Journal ArticleDOI
TL;DR: This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications and presents a few case studies that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality.
Abstract: With the advent of Internet of Things (IoT) devices, their reconfigurability, networking, task automation, and control ability have been a boost to the evolution of traditional industries such as health-care, agriculture, power, education, and transport. However, the quantum of data produced by the IoT devices poses serious challenges on its storage, communication, computation, security, scalability, and system’s energy sustainability. To address these challenges, the concept of green sensing and communication has gained importance. This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications. Further, a few case studies are presented that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality. Challenges associated with these green techniques, various open issues, and future research directions for improving the energy efficiency of the IoT systems are also discussed.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the feasibility of using wearable low-cost pollution sensors for capturing the total exposure of commuters is analyzed by using extensive experiments carried out in the Helsinki metropolitan region, and they demonstrate that wearable sensors can capture subtle variations caused by differing routes, passenger density, location within a carriage, and other factors.
Abstract: Transit activities are a significant contributor to a person’s daily exposure to pollutants. Currently obtaining accurate information about the personal exposure of a commuter is challenging as existing solutions either have a coarse monitoring resolution that omits subtle variations in pollutant concentrations or are laborious and costly to use. We contribute by systematically analysing the feasibility of using wearable low-cost pollution sensors for capturing the total exposure of commuters. Through extensive experiments carried out in the Helsinki metropolitan region, we demonstrate that low-cost sensors can capture the overall exposure with sufficient accuracy, while at the same time providing insights into variations within transport modalities. We also demonstrate that wearable sensors can capture subtle variations caused by differing routes, passenger density, location within a carriage, and other factors. For example, we demonstrate that location within the vehicle carriage can result in up to 25 % increase in daily pollution exposure – a significant difference that existing solutions are unable to capture. Finally, we highlight the practical benefits of low-cost sensors as a pollution monitoring solution by introducing applications that are enabled by low-cost wearable sensors.

15 citations