scispace - formally typeset
Search or ask a question
Author

Naser Ehsani

Bio: Naser Ehsani is an academic researcher from Malek-Ashtar University of Technology. The author has contributed to research in topics: Coating & Microstructure. The author has an hindex of 20, co-authored 72 publications receiving 1912 citations. Previous affiliations of Naser Ehsani include Sharif University of Technology & Iran University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of alumina particle size, sintering temperature and time on the properties of Al-Al 2 O 3 composite were investigated, including density, hardness, microstructure, yield strength, compressive strength and elongation to fracture.

345 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of alumina particle size and its amount on the relative density, hardness, microstructure, wear resistance, yield and compressive strength and elongation in Al-Al2O3 composites was investigated.
Abstract: Al matrix composite is well known, in which Al2O3 is the most widely used reinforcement. The aim of this study is to investigate the effect of alumina particle size and its amount on the relative density, hardness, microstructure, wear resistance, yield and compressive strength and elongation in Al–Al2O3 composites. To this end, the amount of 0–20 wt.% alumina with average particle sizes 48, 12 and 3 μm was used along with pure aluminum of average particle size of 30 μm. Powder metallurgy is a method used in the fabrication of this composite in which the powders were mixed using a planetary ball mill. Consolidation was conducted by axial pressing at 440 MPa. Sintering procedure was done at 550 °C for 45 min. The results indicated that as the alumina particle size is reduced, density raises at first, then, declines. Moreover, as the alumina particle size decreases, hardness, yield strength, compressive strength and elongation increase and factors such as wear resistance, microstructure grain size and distribution homogeneity in matrix decreases. For instance, as the alumina particle size gets smaller from 48 to 3 μm at 10 wt.% alumina, hardness rises from 50 to 70 BHN, compressive strength improves from 168 to 307 MPa and wear rate rises from 0.0289 to 0.0341 mm3/m. On the other hand, as the amount of alumina increases, hardness and wear resistance increase and relative density and elongation is decreased. However, compressive and yield strength rise at first, then drop. For example, if the amount of alumina with 12 μm particle size increases from 5 to 10 wt.%, hardness increases from 47 to 62 BHN and compressive strength rises from 190 to 273 MPa. Nevertheless, erosion rate after 300 m decreases from 0.0447 to 0.0311 mm3/m.

238 citations

Journal ArticleDOI
TL;DR: In this paper, the precipitation process involved the addition of orthophosphoric acid solution to a calcium hydroxide solution and the results clearly revealed that the final precipitated powder is hydroxyapatite (HA) with good purity, stoichiometry and successful thermal stability.

188 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of production parameters on wear resistance of Al-Al2O3 composites was examined and it was found that increasing sintering temperature and time results in increasing density, hardness and wear resistance.

164 citations

Journal ArticleDOI
TL;DR: In this article, a stoichiometric hydroxyapatite (HA) powder was synthesized by wet method using orthophosphoric acid and calcium hydroxide, as raw materials.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the past, present, and future of the hydroxyapatite (HAp)-based biomaterials from the point of view of preparation of hard tissue replacement implants is presented in this paper.
Abstract: This paper reviews the past, present, and future of the hydroxyapatite (HAp)-based biomaterials from the point of view of preparation of hard tissue replacement implants. Properties of the hard tissues are also described. The mechanical reliability of the pure HAp ceramics is low, therefore it cannot be used as artificial teeth or bones. For these reasons, various HAp-based composites have been fabricated, but only the HAp-coated titanium alloys have found wide application. Among the others, the microstructurally controlled HAp ceramics such as fibers/whiskers-reinforced HAp, fibrous HAp-reinforced polymers, or biomimetically fabricated HAp/collagen composites seem to be the most suitable ceramic materials for the future hard tissue replacement implants.

1,892 citations

Journal ArticleDOI
TL;DR: This article is focused on nanosized HAp, although recent articles on microsized particles, especially those assembled from nanoparticles and/or nanocrystals, have been reviewed for comparison.

1,036 citations

Journal ArticleDOI
TL;DR: In this article, all the techniques on synthesis and consolidation of boron carbide are discussed in detail and critically reviewed, including hot pressing and hot isostatic pressing are the main processes employed for densification.
Abstract: Boron carbide is a strategic material, finding applications in nuclear industry, armour for personnel and vehicle safety, rocket propellant, etc. Its high hardness makes it suitable for grinding and cutting tools, ceramic bearing, wire drawing dies, etc. Boron carbide is commercially produced either by carbothermic reduction of boric acid in electric furnaces or by magnesiothermy in presence of carbon. Since many specialty applications of boron carbide require dense bodies, its densification is of great importance. Hot pressing and hot isostatic pressing are the main processes employed for densification. In the recent past, various researchers have made attempts to improve the existing methods and also invent new processes for synthesis and consolidation of boron carbide. All the techniques on synthesis and consolidation of boron carbide are discussed in detail and critically reviewed.

558 citations

Journal ArticleDOI
TL;DR: This paper examines the current research in the materials science and the critical issues and challenges in these materials systems that require further research before application in biomedical industry.

468 citations

Journal ArticleDOI
TL;DR: In this article, the influence of graphite on the wear behavior of Al 7075/Al 2 O 3 /5.% graphite hybrid composite was investigated and the results revealed the effectiveness of incorporating graphite in the composite for gaining wear reduction.
Abstract: This work investigated the influence of graphite on the wear behavior of Al 7075/Al 2 O 3 /5 wt.% graphite hybrid composite. The investigation reveals the effectiveness of incorporation of graphite in the composite for gaining wear reduction. The Al 7075 (aluminium alloy 7075) reinforced with Al 2 O 3 –graphite were investigated. The composites were fabricated using liquid metallurgy route. Ceramic particles along with solid lubricating materials were incorporated into aluminium alloy matrix to accomplish reduction in both wear resistance and coefficient of friction. The Al 7075/Al 2 O 3 /graphite hybrid composite was prepared with 5 wt.% graphite particles addition and 2, 4, 6 and 8 wt.% of Al 2 O 3 . The hardness, tensile strength, flexural strength and compression strength of the Al 7075–Al 2 O 3 –graphite hybrid composites are found to be increased by increased weight percentage of ceramic phase. The wear properties of the hybrid composites containing graphite exhibited the superior wear-resistance properties.

468 citations