scispace - formally typeset
Search or ask a question
Author

Naser El-Sheimy

Bio: Naser El-Sheimy is an academic researcher from University of Calgary. The author has contributed to research in topics: Inertial navigation system & Inertial measurement unit. The author has an hindex of 45, co-authored 368 publications receiving 7669 citations. Previous affiliations of Naser El-Sheimy include InvenSense & National Cheng Kung University.


Papers
More filters
Journal ArticleDOI
TL;DR: The theoretical basis for the Allan variance for modeling the inertial sensors' error terms and its implementation in modeling different grades of inertial sensor units are covered.
Abstract: It is well known that inertial navigation systems can provide high-accuracy position, velocity, and attitude information over short time periods. However, their accuracy rapidly degrades with time. The requirements for an accurate estimation of navigation information necessitate the modeling of the sensors' error components. Several variance techniques have been devised for stochastic modeling of the error of inertial sensors. They are basically very similar and primarily differ in that various signal processings, by way of weighting functions, window functions, etc., are incorporated into the analysis algorithms in order to achieve a particular desired result for improving the model characterizations. The simplest is the Allan variance. The Allan variance is a method of representing the root means square (RMS) random-drift error as a function of averaging time. It is simple to compute and relatively simple to interpret and understand. The Allan variance method can be used to determine the characteristics of the underlying random processes that give rise to the data noise. This technique can be used to characterize various types of error terms in the inertial-sensor data by performing certain operations on the entire length of data. In this paper, the Allan variance technique will be used in analyzing and modeling the error of the inertial sensors used in different grades of the inertial measurement units. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data. Being a directly measurable quantity, the Allan variance can provide information on the types and magnitude of the various error terms. This paper covers both the theoretical basis for the Allan variance for modeling the inertial sensors' error terms and its implementation in modeling different grades of inertial sensors.

741 citations

Journal ArticleDOI
26 Apr 2016-Sensors
TL;DR: An algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel- separation fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons is proposed.
Abstract: Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.

371 citations

Journal ArticleDOI
TL;DR: A new multi-position calibration method was designed for MEMS of high to medium quality that has been adapted to compensate for the primary sensor errors, including the important scale factor and non-orthogonality errors of the gyroscopes.
Abstract: The Global Positioning System (GPS) is a worldwide navigation system that requires a clear line of sight to the orbiting satellites For land vehicle navigation, a clear line of sight cannot be maintained all the time as the vehicle can travel through tunnels, under bridges, forest canopies or within urban canyons In such situations, the augmentation of GPS with other systems is necessary for continuous navigation Inertial sensors can determine the motion of a body with respect to an inertial frame of reference Traditionally, inertial systems are bulky, expensive and controlled by government regulations Micro-electro mechanical systems (MEMS) inertial sensors are compact, small, inexpensive and most importantly, not controlled by governmental agencies due to their large error characteristics Consequently, these sensors are the perfect candidate for integrated civilian navigation applications with GPS However, these sensors need to be calibrated to remove the major part of the deterministic sensor errors before they can be used to accurately and reliably bridge GPS signal gaps A new multi-position calibration method was designed for MEMS of high to medium quality The method does not require special aligned mounting and has been adapted to compensate for the primary sensor errors, including the important scale factor and non-orthogonality errors of the gyroscopes A turntable was used to provide a strong rotation rate signal as reference for the estimation of these errors Two different quality MEMS IMUs were tested in the study The calibration results were first compared directly to those from traditional calibration methods, eg six-position and rate test Then the calibrated parameters were applied in three datasets of GPS/INS field tests to evaluate their accuracy indirectly by comparing the position drifts during short-term GPS signal outages

366 citations

Journal ArticleDOI
TL;DR: In this paper, the Allan variance method is used to characterize the noise in the MEMS sensors and a six-position calibration method is applied to estimate the deterministic sensor errors such as bias, scale factor, and non-orthogonality.
Abstract: Navigation involves the integration of methodologies and systems for estimating the time varying position and attitude of moving objects. Inertial Navigation Systems (INS) and the Global Positioning System (GPS) are among the most widely used navigation systems. The use of cost effective MEMS based inertial sensors has made GPS/INS integrated navigation systems more affordable. However MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable navigation results. Moreover the performance characteristics of these sensors are highly dependent on the environmental conditions such as temperature variations. Hence there is a need for the development of accurate, reliable and efficient thermal models to reduce the effect of these errors that can potentially degrade the system performance. In this paper, the Allan variance method is used to characterize the noise in the MEMS sensors. A six-position calibration method is applied to estimate the deterministic sensor errors such as bias, scale factor, and non-orthogonality. An efficient thermal variation model is proposed and the effectiveness of the proposed calibration methods is investigated through a kinematic van test using integrated GPS and MEMS-based inertial measurement unit (IMU).

171 citations

Journal ArticleDOI
TL;DR: Two crowdsourcing-based WPSs are proposed to build the databases on handheld devices by using designed algorithms and an inertial navigation solution from a Trusted Portable Navigator (T-PN), and implement a simple MEMS-based sensors' solution.
Abstract: Current WiFi positioning systems (WPSs) require databases – such as locations of WiFi access points and propagation parameters, or a radio map – to assist with positioning. Typically, procedures for building such databases are time-consuming and labour-intensive. In this paper, two autonomous crowdsourcing systems are proposed to build the databases on handheld devices by using our designed algorithms and an inertial navigation solution from a Trusted Portable Navigator (T-PN). The proposed systems, running on smartphones, build and update the database autonomously and adaptively to account for the dynamic environment. To evaluate the performance of automatically generated databases, two improved WiFi positioning schemes (fingerprinting and trilateration) corresponding to these two database building systems, are also discussed. The main contribution of the paper is the proposal of two crowdsourcing-based WPSs that eliminate the various limitations of current crowdsourcing-based systems which (a) require a floor plan or GPS, (b) are suitable only for specific indoor environments, and (c) implement a simple MEMS-based sensors’ solution. In addition, these two WPSs are evaluated and compared through field tests. Results in different test scenarios show that average positioning errors of both proposed systems are all less than 5.75 m.

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work forms a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms and compares the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter.
Abstract: Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual-inertial odometry or simultaneous localization and mapping SLAM. While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual-inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual-inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.

1,472 citations

Journal ArticleDOI
TL;DR: A detailed overview of the TanDEM-X mission concept is given which is based on the systematic combination of several innovative technologies, including a novel satellite formation flying concept allowing for the collection of bistatic data with short along-track baselines, as well as the use of new interferometric modes for system verification and DEM calibration.
Abstract: TanDEM-X (TerraSAR-X add-on for digital elevation measurements) is an innovative spaceborne radar interferometer that is based on two TerraSAR-X radar satellites flying in close formation. The primary objective of the TanDEM-X mission is the generation of a consistent global digital elevation model (DEM) with an unprecedented accuracy, which is equaling or surpassing the HRTI-3 specification. Beyond that, TanDEM-X provides a highly reconfigurable platform for the demonstration of new radar imaging techniques and applications. This paper gives a detailed overview of the TanDEM-X mission concept which is based on the systematic combination of several innovative technologies. The key elements are the bistatic data acquisition employing an innovative phase synchronization link, a novel satellite formation flying concept allowing for the collection of bistatic data with short along-track baselines, as well as the use of new interferometric modes for system verification and DEM calibration. The interferometric performance is analyzed in detail, taking into account the peculiarities of the bistatic operation. Based on this analysis, an optimized DEM data acquisition plan is derived which employs the combination of multiple data takes with different baselines. Finally, a collection of instructive examples illustrates the capabilities of TanDEM-X for the development and demonstration of new remote sensing applications.

1,235 citations

Journal ArticleDOI
TL;DR: The theoretical basis for the Allan variance for modeling the inertial sensors' error terms and its implementation in modeling different grades of inertial sensor units are covered.
Abstract: It is well known that inertial navigation systems can provide high-accuracy position, velocity, and attitude information over short time periods. However, their accuracy rapidly degrades with time. The requirements for an accurate estimation of navigation information necessitate the modeling of the sensors' error components. Several variance techniques have been devised for stochastic modeling of the error of inertial sensors. They are basically very similar and primarily differ in that various signal processings, by way of weighting functions, window functions, etc., are incorporated into the analysis algorithms in order to achieve a particular desired result for improving the model characterizations. The simplest is the Allan variance. The Allan variance is a method of representing the root means square (RMS) random-drift error as a function of averaging time. It is simple to compute and relatively simple to interpret and understand. The Allan variance method can be used to determine the characteristics of the underlying random processes that give rise to the data noise. This technique can be used to characterize various types of error terms in the inertial-sensor data by performing certain operations on the entire length of data. In this paper, the Allan variance technique will be used in analyzing and modeling the error of the inertial sensors used in different grades of the inertial measurement units. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data. Being a directly measurable quantity, the Allan variance can provide information on the types and magnitude of the various error terms. This paper covers both the theoretical basis for the Allan variance for modeling the inertial sensors' error terms and its implementation in modeling different grades of inertial sensors.

741 citations

Journal ArticleDOI
TL;DR: This work created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery, and contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California.
Abstract: Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. Machine-accessible metadata file describing the reported data (ISA-Tab format)

633 citations