scispace - formally typeset
Search or ask a question
Author

Natalia Díaz-Rodríguez

Bio: Natalia Díaz-Rodríguez is an academic researcher from French Institute for Research in Computer Science and Automation. The author has contributed to research in topics: Computer science & Reinforcement learning. The author has an hindex of 17, co-authored 45 publications receiving 2050 citations. Previous affiliations of Natalia Díaz-Rodríguez include École Normale Supérieure & University of California, Santa Cruz.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations

Posted Content
TL;DR: Previous efforts to define explainability in Machine Learning are summarized, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought, and a taxonomy of recent contributions related to the explainability of different Machine Learning models are proposed.
Abstract: In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

1,602 citations

Journal ArticleDOI
TL;DR: This survey aims at covering the state-of-the-art on state representation learning in the most recent years by reviewing different SRL methods that involve interaction with the environment, their implementations and their applications in robotics control tasks (simulated or real).

274 citations

Posted Content
TL;DR: ContinContinual Learning (CL) is a particular machine learning paradigm where the data distribution and learning objective changes through time, or where all the training data and objective criteria are never available at once as mentioned in this paper.
Abstract: Continual learning (CL) is a particular machine learning paradigm where the data distribution and learning objective changes through time, or where all the training data and objective criteria are never available at once. The evolution of the learning process is modeled by a sequence of learning experiences where the goal is to be able to learn new skills all along the sequence without forgetting what has been previously learned. Continual learning also aims at the same time at optimizing the memory, the computation power and the speed during the learning process. An important challenge for machine learning is not necessarily finding solutions that work in the real world but rather finding stable algorithms that can learn in real world. Hence, the ideal approach would be tackling the real world in a embodied platform: an autonomous agent. Continual learning would then be effective in an autonomous agent or robot, which would learn autonomously through time about the external world, and incrementally develop a set of complex skills and knowledge. Robotic agents have to learn to adapt and interact with their environment using a continuous stream of observations. Some recent approaches aim at tackling continual learning for robotics, but most recent papers on continual learning only experiment approaches in simulation or with static datasets. Unfortunately, the evaluation of those algorithms does not provide insights on whether their solutions may help continual learning in the context of robotics. This paper aims at reviewing the existing state of the art of continual learning, summarizing existing benchmarks and metrics, and proposing a framework for presenting and evaluating both robotics and non robotics approaches in a way that makes transfer between both fields easier.

160 citations

Journal ArticleDOI
TL;DR: This paper aims at reviewing the existing state of the art of continual learning, summarizing existing benchmarks and metrics, and proposing a framework for presenting and evaluating both robotics and non robotics approaches in a way that makes transfer between both fields easier.

99 citations


Cited by
More filters
01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations

Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations